In this paper, we present some vanishing theorems for p-harmonic forms on -super stable complete submanifold M immersed in sphere Sn + m. When 2 ≤ 1 ≤ n-2, M has a flat normal bundle. Assuming that M is a minimal submanifold and δ > 1(n–1)p2 / 4n[p–1+(p–1)2kp], we prove a vanishing theorem for p-harmonic ℓ-forms.
do Carmo M, Peng CK, 1979, Stable Minimal Surfaces in R3 Are Planes. Bull. Amer Math Soc, 1979(1): 903–906.
Fischer-Colbrie D, Schoen R, 1980, The Structure of Complete Stable Minimal Surfaces in 3-Manifolds of Non-Negative Scalar Curvature. Comm. Pure Appl Math, 1980(33): 199–211.
Cao HD, Shen Y, Zhu SH, 1997, The Structure of Stable Minimal Hypersurfaces in Rn+1. Math Res Lett, 4(5): 637–644.
Schoen R, Yau ST, 1976, Harmonic Maps and the Topology of Stable Hypersurfaces and Manifolds with Non-Negative Ricci Curvature. Comment Math Helv, 51(3): 333–341.
Palmer B, 1991, Stability of Minimal Hypersurfaces. Comment Math Helv, 66(2): 185–188.
Cavalcante MP, Mirandola H, Vitório F, 2014, L2-Harmonic 1-Forms on Submanifolds with Finite Total Curvature. J Geom Anal, 24(1): 205–222.
Zhu P, 2011, L2-Harmonic Forms and Stable Hypersurfaces in Space Forms. Arch Math, 2011(97): 271–279.
Tanno S, 1996, L2 Harmonic Forms and Stability of Minimal Hypersurfaces. Math Soc Japanese, 1996(48): 761–768.
Zhu P, Gan W, 2014, L2 Harmonic 1-Forms on Minimal Submanifolds in Spheres. Results Math, 2014(65): 483–490.
Han YB, 2018, The Topological Structure of Complete Noncompact Submanifolds in Spheres. J Math Anal Appl, 457(1): 991–1006.
Zhang X, 2001, A Note on p-Harmonic 1-Forms on Complete Manifolds. Canad Math Bull, 44(3): 376–384.
Chang LC, Guo CL, Sung CJ, 2010, p-Harmonic 1-Forms on Complete Manifolds. Arch Math, 94(2): 183–192.
Han YB, 2018, Vanishing Theorem for p-Harmonic 1-Forms on Complete Submanifolds in Spheres. Bull Iranian Math Soc, 44(3): 659–671.
Han YB, 2018, p-Harmonic l-Forms on Complete Noncompact Submanifolds in Sphere with Flat Normal Bundle. Bull Braz Math Soc, 49(1): 107–122.
Dung NT, Tien PT, 2018, Vanishing Properties of p-Harmonic l-Forms on Riemannian Manifolds. J Korean Math Soc, 55(5): 1103–1129.
Dung NT, Sung CJ, Analysis of Weighted p-Harmonic Forms and Applications. Internat J Math, 30(11): 1950058.