Dissipativity of Multistep Runge–Kutta Methods for Nonlinear Neutral Delay-Integro-Differential Equations with Constrained Grid
Download PDF
$currentUrl="http://$_SERVER[HTTP_HOST]$_SERVER[REQUEST_URI]"

DOI

10.26689/jcer.v5i1.1813

Submitted : 2021-01-06
Accepted : 2021-01-21
Published : 2021-02-05

Abstract

This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations. We investigate the dissipativity properties of -algebraically stable multistep Runge-Kutta methods with constrained grid. The finite-dimensional and infinite-dimensional dissipativity results of -algebraically stable multistep Runge-Kutta methods are obtained.