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1  Introduction

Many dynamical systems in physics and engineering 
are characterized by the property of possessing a 
bounded absorbing set which all trajectories enter in 
a finite time and thereafter remain inside[1-4]. They 
are modeled by dissipative dynamical systems. In the 
study of dissipative systems it is often the asymptotic 
behavior of the system that is of interest, and so it 
is important to analyze whether or not numerical 
methods inherit the dissipativity of the dynamical 
systems when considering the applicability of 
numerical methods for these systems. 

Humphries and Stuart [3, 4] f irst  studied the 
dissipativity of Runge–Kutta methods for initial value 

problems (IVPs) of ordinary differential equations 
(ODEs) in1994, and proved that an algebraically 
stable, irreducible method can inherit the dissipativity 
of finite-dimesional systems. Later, many results on 
the dissipativity of numerical methods for ODEs 
have already been found[5-7]. For the delay differential 
equations (DDEs) with constant delay, Huang[8] 
gave a sufficient condition for the dissipativity of 
theoretical solution, and investigated the dissipativity 
of (k, l) -algebraically stable Runge–Kutta methods. 
Huang and Chen [9] and Huang[10], subsequently, 
obtained some results about the dissipativity of linear 
θ-methods and G(c, p, 0) -algebraically stable one-leg 
methods, respectively. In addition, Huang [11] further 
discussed the dissipativity of multistep Runge-
Kutta methods, and proved that an algebraically 
stable, irreducible multistep Runge-Kutta methods 
with linear interpolation procedure is finite-
dimensional dissipative. In 2004, Tian [12] studied the 
dissipativity of DDEs with a bounded variable lag 
and the dissipativity of θ -method. Moreover, Wen[13] 
discussed the dissipativity of Volterra functional 
differential equations, and further investigated the 
dissipativity of DDEs with piecewise delays and a 
class of linear multistep methods. In recent years, a 
number of works on the dissipativity of numerical 
methods have been carried out. Gan[14-16] studied the 
dissipativity of numerical methods for nonlinear 
integro differential equations(IDEs), nonlinear delay-
integro-differential equations(DIDEs) and nonlinear 
pantograph equations, respectively. As to nonlinear 
Volterra delay-integro-differential Equations, it was 
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shown that for θ ∈ [1/2, 1], any linear θ-method 
and one-leg method can inherit the dissipativity 
property, which was obtained by Gan[15]. In addition, 
Cheng and Huang [19], Wen et al[20] and Wang et 
al[21] considered the dissipativity for nonlinear 
neutral delay differential equations(NDDEs). Wu 
and Gan [22] consider the dissipativity for a class of 
nonlinear neutral delay integro differential equations 
(NDIDEs). So far we have not seen in literature more 
dissipativity results for nonlinear NDIDEs.

This paper pursues this, and further investigates the 
dissipativity of multistep Runge-Kutta methods for 
nonlinear NDIDEs. The motivations are as follows. 
Multistep Runge-Kutta methods are a wider class of 
methods which has as special cases not only one-leg 
methods, linear multistep methods, and Runge-Kutta 
methods, but also a wide range of hybrid methods. In 
particular, there exist algebraically stable multistep 
Runge-Kutta methods with only real eigenvalues such 
that they not only possess very good stability, but also 
can be performed in parallel.

2  The description of the problem and num-
erical Methods

Let H be a real or complex, finite dimensional or 
infinite-dimensional Hilbert space with the inner 
product 〈·，·〉 and the corresponding induced 
norm ⋅ , and the matrix norm is subordinated to the 
vector norm. X be a dense continuously imbedded 
subspace of H. Consider the following initial value 
problems (IVPs) of nonlinear NDIDEs:

� (2.1)
where  is a given constant delay, N∈X×X stands 

for a constant matrix with , 
i s  a  cont inuous  func t ion ,   
i s  a  local ly  Lipschi tz  cont inuous  funct ion, 

 i s  a  c o n t i n u o u s 
function, f and satisfy the following conditions:

(2.2)
and 

� (2.3)
where β0, β1, β2, β3 and η are real constants. 

Throughout this paper, we assume that the problem 
(2.1) has unique exact solution y(t). For the study of 
solvability, we refer the reader to [2]. 
Reark2.1. When N=0, the problem (2.1) degenerates 
into an IVP of DIDEs. When the right-hand side 
function of the problem (2.1) does not possess the 
integral term, the problem (2.1) degenerates into an 
IVP of NDDEs. When N=0 and the right-hand side 
function of the problem (2.1) does not possess the 
integral term, the problem (2.1) degenerates into 
an IVP of DDEs. In the above various cases, the 
number of papers dealing with different aspects of 
their numerical integration now amounts to several 
hundreds.
Proposition 2.2[15] . Condition (2.2) implies that 
β0 ≥ 0, β2 ≥ 0 and β3 ≥ 0.

Next, let us consider the adaptation of s-stage 
multistep Runge-Kutta methods for solving problem 
(2.1) based on the formula

� (2.4)
where h>0 is the fixed stepsize, the parameters 

aij, bij, θj and γj are real constants, Yi
(n) and yn are 

approximation to y(tn+cih) and  y(tn), respectively, 
and  t n=nh .  The argument  ,  and  
denotes an approximation to   , 

 and  ,  those 
are obtained by a specific interpolation procedure 
using values  and   . The initial values 

,  for , and  
,  for . Following the 
referee’s suggestion, we assume that   

 
As to the computation of the delay terms  and 

integral terms ,  we use the constrained 
stepsize h satisfying hm=t with a positive integer m.
Let 

 ,� (2.5a)
 .� (2.5b)

and the compound quadrature (CQ) formula for the 
integral terms:

,   (2.5c)
where  ,  
The quadrature formula (2.5c) can be derived from 

a uniform repeated rule [19]. For our stability analysis 
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we need the rule to satisfy the following condition:

,� (2.6)
with hm=t and a positive constant v.

Remark 2.3. We consider the procedure (2.5) here 
because, in the case that the order of the method is 
more than 2, there will be no order reduction if the 
corresponding quadrature rule is used. But it must be 
noticed that the stepsize h is limited by mh=t .

The used values  and yn with  
are assumed to be 0. Here, we do not discuss other 
details.

It is well known that multistep Runge-Kutta 
methods are a subclass of a general linear methods. 
Let

,    , � (2.7a) 

, 

 � (2.7b)
For any given k×l real matrix Q=[qij], we define 

the corresponding linear operator ,
 ,  

 
with 

  
Then, method (2.3) can be rewritten in the form of 
general linear method

� (2.8)
with the following notational conventions:

 ,
,

,
,

.

We introduce the following notations for brevity, 
for any real symmetric p×p matrix Q=[qij], and 

 means that Q is nonnegative definite 
(positive definite). For any , define a pseudo 
inner product on H p by

  ,
,

and the corresponding pseudo norm on H p by

 .
Especially  is the simplicity for  when Q is 

identity matrix.
Definition2.4.  Let k, l be real constants. A multistep 
Runge-Kutta method (2.4) is said to be(k ,  l) 
-algebraically stable if there exists a real symmetric   
r×r matrix G>0 and a diagonal matrix D=diag(d1, d2, 
…, ds) such that  , where

� (2.9)
As an important special case, a(1,0)-algebraically 

stable method is called algebraically stable for short.
Definition2.5. Let l be a real constant, and H be a 
finite-dimensional (or infinite-dimensional) space. 
A multistep Runge-Kutta method (2.4) with an 
interpolation procedure and integral terms are said 
to be finite-dimensionally (or infinite-dimensionally)  
D(l) dissipative if, when the method is applied to 
problem (2.1) in H withstepsize h satisfying

 , 
(or )

and constraint t=mh, where  and 

, there exists a constant C such that, for any 
initial values, there exists an n0 , dependent only on 
initial values, such that

 ,  ,
holds. As an important special case, a D(0) 

-dissipative method is called D-dissipative for short.
GD(l) -and GD-dissipativity are defined by 

dropping restriction t=mh.
Definition 2.6[11]. A multistep Runge-Kutta method 
(2.4) is said to be stage-reducible if, for some 
nonempty index set  ,



106 Distributed under creative commons license 4.0 Volume 5; Issue 1

 .
Otherwise , it is said to be stage-irreducible. 

Definition 2.7. A multistep Runge-Kutta method (2.4) 
is said to be step-reducible if polynomials  
have common divisor where

,

Otherwise , it is said to be step-irreducible.
Definition 2.8[11]. A multistep Runge-Kutta method 
(2.4) is said to be reducible if it is stage-reducible or 
step-reducible.

3  Finite-dimensional numerical dissipativity

In this section, we focus on the dissipativity analysis 
of (k, l)-algebraically stable multistep Runge-Kutta 
methods with respect to nonlinear NDIDEs in finite-
dimensional spaces. We always assume that H=X=CN.
Lemma 3.1[11]. Suppose  are a basis of 
polynomials for Pr-1, the space of polynomials of 
degree strictly less than r and E is the translation 
operator: . Then there is always a unique 
solution yn, yn+1 , …, yn+r-1 to the system of equations 

 ,  ,  
and there exists a constant χ , independent of  , 

such that
.

Lemma 3.2[11]. Suppose that a multistep Runge-Kutta 
method (2.4) is step-irreducible. Then, there exist 
real constants , such that  and 

 have no common divisor.

Now we state and prove the main results.
Theorem 3.3.  Assume that a step-irreducible 
multistep Runge-Kutta method (2.4) is (k,  l) 
-algebraically stable ,  D>0,  l>0 and ,  the 
problem (2.1) sat isf ies (2.2)  and (2.3)  with 

. Then the 
method (2.4) with (2.5) is finite-dimensionally D(l)-
dissipative.

Proof.  From (2.5),  using Cauchy-Schwarz 
inequality we can obtain 

� (3.1a)

� (3.1b)

Therefore,

� (3.1c)

As in [17] and [15], by means of (k, l)-algebraically 
stability of the method, we can easily obtain that

� (3.2)
= 

=
 

Considering (2.2), (2.3) and  , we have

 
 ,

Using (3.1) and Cauchy-Schwarz inequality, we 
have  

 

� (3.3)
Where 

 ,  .� (3.4)
By induction, we can easily obtain
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. � (3.5)
When using (2.5) and (3.1) on substitution into 

(3.5) gives

� (3.6)
Let  denote the maximum eigenvalue of the 

matrix G,

 ,   ,

 ,
.

Then, we have  and 

 . � (3.7)
When , it follows from (3.7) and  that

 ,

which shows that for any  , there exists 
 such that

 ,   . 
          �   (3.8)

Hence, (2.4) implies that 

 � (3.9a)

� (3.9b)

where

.
From Lemma 3.2 it follows that there exist real 

constants   ,  such that   and 

 have no common divisor. Therefore,

,
which further gives

�
(3.10)

Since  and  are coprime, 

and both are of degree r. Hence,

 

,
form a basis for P2r-1. Considering (3.9), (3.10) and 

Lemma 3.1, we have 

 for  and  .

Therefore, 
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 � (3.11)

where   .
When  , let us take  ,

 ,

where the notation  means the maximum integer 
no greater than x, then

 

 .

It follows from (3.7) that

 ,

which gives

 .

Hence, there exists an integer  such that  .

� (3.12)

Let  , then for all ,we have
 ,

            � (3.13)

where 

 .

Therefore, by (2.4) and (2.5), for all  ,

 

 � (3.14a)

 � (3.14b)

where
 ,  ,

where  .

Therefore,

�  (3.15)

with  .
Considering (3.14), (3.15), lemma 3.1 and lemma 

3.2, similar to (3.11), we have
 ,  , � (3.16)

where 

 .

Let 
.

A repetition of the above analysis implies that 
there exists a ,

 

 ,

such that
 , � (3.17)

 , . � (3.18)
Similar to (3.3), (3.5) and (3.7), for  , we 

can obtain

 � (3.19)

Similar to (3.11), we can obtain



109Distributed under creative commons license 4.0 Volume 5; Issue 1

Hence, by induction, we have 

� (3.20)
for

and .
A combination of (3.11) and (3.20) shows that the 

method is finite-dimensionally  D(l)-dissipative.
Theorem 3.4. Assume that a step-irreducible 
mul t i s tep  Runge-Kut ta  method (2 .4)  i s  (k , 
l )  -a lgebra ica l ly  s tab le ,  D>0,  l<0 and 
, the problem (2.1) satisfies (2.2) and (2.3) with  

.Then the 
method (2.4) with (2.5) is finite-dimensionally D(l)-
dissipative.

Proof. In the proof of theorem 3.3, change all dmin 
into d, we can get the proof of theorem 3.4.
Theorem 3.5.  Assume that a method (2.4) is 
irreducible and algebraically stable, the problem (2.1) 
satisfies (2.2) and (2.3) with . Then, 
the method (2.4) with (2.5) is finite-dimensionally 
D-dissipative. 

Proof. As in [18], we can prove that, if a stage-
irreducible method (2.4) is algebraically stable for the 
matrices G and D, then D>0, therefore, use the proof 
of theorem 3.3 for k=1, l=0, we prove this theorem.

4  Infinite- dimensional numerical dissipativity

In this section, we further discuss the dissipativity 
of (k, l)-algebraically stable multistep Runge-Kutta 
methods in infinite-dimensional spaces. Here we 
assume that H is an infinite-dimensional complex 
Hilbert space instead of .
Theorem 4.1. Assume that a step-irreducible 
multistep Runge-Kutta method (2.4) is (k, l)-
a l g e b r a i c a l l y  s t a b l e ,  D > 0 ,  l  > 0  a n d  k < 1 , 
the problem (2.1) satisfies (2.2),  (2.3) with 

. Then the 

method (2.4) with (2.5) is infinite-dimensionally D(l)-
dissipative.
Proof. Let 

, (4.1)
w h e n  , w e 
have  . Using (3.3), we deduce that

�  (4.2)
Iterating (4.2) and considering (2.6) and (3.1), we 

have

        

             

          

� (4.3)
where we have used that .
Thus, for any ε >0 there exists n0>0, such that

, .                             (4.4)
Similar to (3.11), we can obtain
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 ,

.
with  , which shows the method (2.4) 

with (2.5) is infinite-dimensionally  D(l)-dissipative.
Theorem 4.2. Assume that a step-irreducible 
mul t i s tep  Runge-Kut ta  method (2 .4)  i s  (k , 
l ) -a lgebra ica l ly  s tab le ,  D>0,  l<0 and  k<1, 
the problem (2.1) satisfies (2.2) ,(2.3) with 

. Then the 
method (2.4) with (2.5) is infinite-dimensionally D(l)-
dissipative.

Proof. In the proof of theorem 4.1, change all dmin  
into d , we can get the proof of theorem 4.2.
Theorem 4.3. Assume that there exist nonnegative 
constants  k1, k2, k1<k2 , such that the stage-irreducible 
method (2.4) is  -algebraically 
stable for every l<0. Then, the method (2.4) with (2.5) 
is infinite-dimensionally  D-dissipative.

5  Comparison with existing results

(1) When N=0, the problem (2.1) degenerates into an 
IVP of DIDEs

� (5.1)
The conditions (2.2) and (2.3) degenerate into

,
, �   (5.2)

and 

� (5.3)
Gan [15] studies the dissipativity of θ-methods 

for DIDEs (5.1), Qi et al. [23] study the dissipativity 
of multistep Runge-Kutta methods for nonlinear 
VDIDEs. So far we have not seen in literature other 
numerical dissipativity results for nonlinear DIDEs. 
But Theorems 3.3, Theorems 3.4, Theorems 4.1 and 
Theorems 4.2 in this paper can be applied to this class 
of problem directly, and we can obtain the following 
Corollaries.

Corollary 5.1. Assume that a step-irreducible 
m u l t i s t e p  R u n g e - K u t t a  m e t h o d  ( 2 . 4 )  i s 
( k ,  l ) - a l g e b r a i c a l l y  s t a b l e ,  D > 0 ,  l > 0  a n d

, the problem (5.1) satisfies (5.2) , (5.3) with 
. Then the method (2.4) 

with (2.5) for DIDEs is finite-dimensionally D(l)-
dissipative.
Corollary 5.2. Assume that a step-irreducible 
multistep Runge-Kutta method (2.4) is (k, l)-
algebraical ly s table,  D>0, l>0 and k<1, the 
p r o b l e m  ( 5 . 1 )  s a t i s f i e s  ( 5 . 2 )  ,  ( 5 . 3 )  w i t h 

 . Then the method 
(2.4) with (2.5) for DIDEs is infinite-dimensionally 
D(l)-dissipative.

(2) When the right-hand side function of the 
problem (2.1) does not possess the integral term, the 
problem (2.1) degenerates into an IVP of NDDEs

� (5.4)
and the fourth term of the right side of condition 

(2.2) vanishes and thus (2.2) degenerates into

,
� (5.5)

Wen [20] studies the dissipativity of θ-methods 
for nonlinear NDDEs (5.4) ,Wang[21] studies the 
dissipativity of Runge-Kutta methods for NDDEs 
with piecewise constant delay. So far we have not 
seen in literature other numerical dissipativity results 
for nonlinear NDDEs. Theorems 3.3, Theorems 3.4, 
Theorems 4.1 and Theorems 4.2 in this paper can be 
applied to this class of problem directly, and we can 
obtain the following Corollaries.
Corollary 5.3. Assume that a step-irreducible 
multistep Runge-Kutta method (2.4) is (k,  l) 
-algebraically stable, D>0, l>0 and , the problem 
(5.4) satisfies (5.5) with  . Then 
the method (2.4) with (2.5) for NDDEs is finite-
dimensionally D(l)-dissipative.
Corollary 5.4. Assume that a step-irreducible 
multistep Runge-Kutta method (2.4) is (k,  l) 
-algebraically stable, D>0, l>0 and k<1, the problem 
(5.4) satisfies (5.5) with  . Then 
the method (2.4) with (2.5) for NDDEs is infinite-
dimensionally D(l)-dissipative.

(3) When N=0 and the right-hand side function of 
the problem (2.1) does not possess the integral term, 
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the problem (2.1) degenerates into an IVP of DDEs. 
Therefore, the results of Theorems 3.3, Theorems 3.4, 
Theorems 4.1 and Theorems 4.2 In this paper partially 
cover the numerical dissipativity of multistep Runge-
Kutta for DDEs which is given by Huang in [11].
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