Mathematical Problems in the Case of a Curriculum: Analysis based on Context and Contextualization
Download PDF


Context and contextualization of mathematical problems
Mathematical curriculum
Theoretical foundations of the curriculum
Active and meaningful contextualization



Submitted : 2023-06-18
Accepted : 2023-07-03
Published : 2023-07-18


The objective of this study is to analyze the context and contextualization of problems from the case of the Costa Rican curriculum developed in the 2012 reform. The mixed methodology consists of a qualitative content analysis and a subsequent quantitative account. A system of categories is built from a literature review leading to the study of types of context and types of contextualization. The 59.5% out of the total of 141 problems has a scientific/mathematics context, with contextualization of the active type in only a few of them. Moreover, contexts of the rural and indigenous types are absent. We conclude therefore that some disconnections exist between the theoretical curricular basis and the problems exemplified. Finally, we propose the further discussion of our categories as indicators for the design of mathematical problems with contextualization of the active and significant types.


Puig A, 1955, Decálogo de la Didáctica Matemática Media [Decalogue of Middle Mathematics Didactics]. Gaceta Matemática, 7(5): 130–135.

Bishop AJ, 1991, Mathematical Enculturation: A cultural Perspective on Mathematics Education. Kluwer / Springer, Dordrecht.

Presmeg N, (eds) 2007, The Role of Culture in Teaching and Learning Mathematics, in Second Handbook of Research on Mathematics Teaching and Learning, Information Age Publishing, Charlotte, 435–458.

Freudenthal H, 2002, Revisiting Mathematics Education. China lectures. Kluwer / Springer, New York.

Gutstein E, Lipman P, Hernandez P, et al., 1997, Culturally Relevant Mathematics Teaching in a Mexican American Context. Journal for Research in Mathematics Education, 28(6): 709–737.

D’Ambrosio U, 2008, Etnomatemática. Eslabón Entre las Tradiciones y la Modernidad [Ethnomathematics. Linking Traditions and Modernity], Limusa, México DF.

Bishop AJ, 2005, Aproximación Sociocultural a la Educación Matemática [Sociocultural Approach to Mathematics Education]. Universidad del Valle, Instituto de Educación y Pedagogía, Cali.

Fuentes C, 2013, Etnomatemática y Escuela: Algunos Lineamientos para su Integración [Ethnomathematics and School: Some Guidelines for its Integration]. Revista Científica, n. especial: 46–50.

Peña P, 2014, Etnomatemáticas y Currículo: Una Relación Necesaria [Ethnomathematics and Curriculum: A Necessary Relationship]. Revista Latinoamericana de Etnomatemática, 7(2): 170–180.

Ministerio de Educación Pública de Costa Rica (MEP), 2012, Programas de Estudio de Matemáticas. Educación General Básica y Ciclo Diversificado [Mathematics Curriculum. General Basic Education and Diversified Cycle], San José.

Ruiz Á, 2000, El Desafío de las Matemáticas [The Challenge of Mathematics], Editorial Universidad Nacional, San José.

Ruiz Á, 2013, La Educación Matemática en Costa Rica: Antes de la Reforma [Mathematics Education in Costa Rica: Before the Reform]. Cuadernos de Investigación y Formación en Educación Matemática, 8(n. especial): 10–16.

Planas N, (eds) 2015, Avances y Realidades de la Educación Matemática. Colección Crítica y Fundamentos, Graó, Barcelona.

Albanese V, Adamuz-Povedano N, Bracho-López R, (eds) 2017, Development and Contextualization of Tasks from an Ethnomathematical Perspective, in Mathematics Education and Life at Times of Crisis, Thessaly University, Volos, 205–211.

Blanco LJ, Pino J, 2016, ¿Qué Entendemos por Problema de Matemática? [What do we Understand by a Mathematics Problem?], in La Resolución de Problemas de Matemáticas en la Formación Inicial de Profesores de Primaria [Mathematics Problem Solving in the Initial Training of Elementary School Teachers], Universidad de Extremadura, Cáceres, 81–92.

Niss M, 1995, Las Matemáticas en la Sociedad [Mathematics in Society]. UNO-Revista de Didáctica de las Matemáticas, 6: 45–58.

Planas N, Alsina Á, (eds) 2009, Educación Matemática y Buenas Prácticas. Educación Infantil, Primaria, Secundaria y Educación Superior [Mathematics Education and Good Practices. Early Childhood Education, Primary Education, Secondary Education, and Higher Education]. Graó, Barcelona.

Ramos AB, Font V, 2006, Contesto e Contestualizzazione nell’Insegnamento e nell’Apprendimento della Matematica. Una Prospettiva Ontosemiotica [Context and Contextualization in the Teaching and Learning of Mathematics. An Ontosemiotic Perspective]. La Matematica e la sua Didattica, 20(4): 535–556.

Nuñez J, Font V, 1995, Aspectos Ideológicos en la Contextualización de las Matemáticas: Una Aproximación Histórica [Ideological Aspects in the Contextualization of Mathematics: A Historical Approach]. Revista de Educación, 506: 293–314.

Rico L, 2006, La Competencia Matemática en PISA [Mathematical Competence in PISA]. PNA, 1(2): 47–66.

Organización para la Cooperación y el Desarrollo Económico (OECD),2004, Learning for Tomorrow’s World: First results from PISA 2003, París.

Aroca A, 2013, Los Escenarios de Exploración en el Programa de Investigación en Etnomatemáticas [Exploration Scenarios in the Ethnomathematics Research Program]. Educación Matemática, 25(1): 111–131.

Instituto Nacional de Estadística y Censo, 2012, X Censo Nacional de Población y VI de Vivienda Resultados Generales [10th National Census of Population and 6th of Housing: General Results]. San José, Costa Rica.

Ruiz Á, 2017, Los Contextos en el Currículo de Matemáticas de Costa Rica [Contexts in the Mathematics Curriculum of Costa Rica]. Cuadernos de Investigación y Formación en Educación Matemática, 12(n. especial): 72–76.

Palm T, 2008, Impact of Authenticity on Sense Making in Word Problem Solving. Educational Studies in Mathematics, 67(1): 37–58.

Bardin L, 2012, Análisis de Contenido [Context Analysis]. Akal Universitaria, Madrid.

Cabrera FC, 2005, Categorización y Triangulación como Procesos de Validación del Conocimiento en Investigación Cualitativa [Categorization and Triangulation as Processes of Knowledge Validation in Qualitative Research]. Theoria, 14(1): 61–71.