The Gut Microbiota in Hepatic Encephalopathy: From Recognition to Treatment
Download PDF
$currentUrl="http://$_SERVER[HTTP_HOST]$_SERVER[REQUEST_URI]"

Keywords

Gut microbiota
Hepatic encephalopathy
Gut barrier
Treatment

DOI

10.26689/jcnr.v9i1.9511

Submitted : 2025-01-20
Accepted : 2025-02-04
Published : 2025-02-19

Abstract

The role of the gut microbiota in the pathogenesis and treatment of hepatic encephalopathy (HE) has garnered increasing attention due to significant advancements in understanding the gut microbiota over recent years. A growing body of evidence from laboratory and clinical studies highlights a substantial relationship between gut microbiota and HE. Identifying the role of gut microbiota in maintaining normal cognitive function, including its influence on the gut barrier and immune cells, is essential to elucidate the mechanisms underlying the development of HE. This understanding offers novel perspectives for its prevention and treatment. This paper provides a comprehensive review of the research progress concerning the gut microbiota, HE, and their interrelationship, along with current treatment methods for HE. Furthermore, it outlines the limitations and challenges associated with microbiota-based therapeutic research.

References

Turnbaugh PJ, Quince C, Faith JJ, et al., 2010, Organismal, Genetic, and Transcriptional Variation in the Deeply Sequenced Gut Microbiomes of Identical Twins. Proc Natl Acad Sci U S A, 107(16): 7503–7508. https://doi.org/10.1073/pnas.1002355107

De Filippo C, Cavalieri D, Di Paola M, et al., 2010, Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa. Proc Natl Acad Sci U S A, 107(33): 14691–14696. https://doi.org/10.1073/pnas.1005963107

Eckburg PB, Bik EM, Bernstein CN, et al., 2005, Diversity of the Human Intestinal Microbial Flora. Science, 308(5728): 1635–1638. https://doi.org/10.1126/science.1110591

Dethlefsen L, Eckburg PB, Bik EM, et al., 2006, Assembly of the Human Intestinal Microbiota. Trends Ecol Evol, 21(9): 517–523. https://doi.org/10.1016/j.tree.2006.06.013

Rajilić-Stojanović M, Heilig HG, Molenaar D, et al., 2009, Development and Application of the Human Intestinal Tract Chip, a Phylogenetic Microarray: Analysis of Universally Conserved Phylotypes in the Abundant Microbiota of Young and Elderly Adults. Environ Microbiol, 11(7): 1736–1751. https://doi.org/10.1111/j.1462-2920.2009.01900.x

Turnbaugh PJ, Hamady M, Yatsunenko T, et al., 2009, A Core Gut Microbiome in Obese and Lean Twins. Nature, 457(7228): 480–484. https://doi.org/10.1038/nature07540

Yatsunenko T, Rey FE, Manary MJ, et al., 2012, Human Gut Microbiome Viewed Across Age and Geography. Nature, 486(7402): 222–227. https://doi.org/10.1038/nature11053

Hooper LV, 2004, Bacterial Contributions to Mammalian Gut Development. Trends Microbiol, 12(3): 129–134. https://doi.org/10.1016/j.tim.2004.01.001

Jacobsen UP, Nielsen HB, Hildebrand F, et al., 2013, The Chemical Interactome Space Between the Human Host and the Genetically Defined Gut Metabotypes. ISME J, 7(4): 730–742. https://doi.org/10.1038/ismej.2012.141

Li M, Wang B, Zhang M, et al., 2008, Symbiotic Gut Microbes Modulate Human Metabolic Phenotypes. Proc Natl Acad Sci U S A, 105(6): 2117–2122. https://doi.org/10.1073/pnas.0712038105

Wang J, Jia H, 2016, Metagenome-Wide Association Studies: Fine-Mining the Microbiome. Nat Rev Microbiol, 14(8): 508–522. https://doi.org/10.1038/nrmicro.2016.83

Zeller G, Tap J, Voigt AY, et al., 2014, Potential of Fecal Microbiota for Early-Stage Detection of Colorectal Cancer. Mol Syst Biol, 10(11): 766. https://doi.org/10.15252/msb.20145645

Tito RY, Cypers H, Joossens M, et al., 2017, Brief Report: Dialister as a Microbial Marker of Disease Activity in Spondyloarthritis. Arthritis Rheumatol, 69(1): 114–121. https://doi.org/10.1002/art.39802

Le Chatelier E, Nielsen T, Qin J, et al., 2013, Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature, 500(7464): 541–546. https://doi.org/10.1038/nature12506

Manichanh C, Rigottier-Gois L, Bonnaud E, et al., 2006, Reduced Diversity of Faecal Microbiota in Crohn’s disease Revealed by a Metagenomic Approach. Gut, 55(2): 205–211. https://doi.org/10.1136/gut.2005.073817

Falony G, Joossens M, Vieira-Silva S, et al., 2016, Population-Level Analysis of Gut Microbiome Variation. Science, 352(6285): 560–564. https://doi.org/10.1126/science.aad3503

Costea PI, Coelho LP, Sunagawa S, et al., 2017, Subspecies in the Global Human Gut Microbiome. Mol Syst Biol, 13(12): 960. https://doi.org/10.15252/msb.20177589

Bonnet R, Suau A, Doré J, et al., 2002, Differences in rDNA Libraries of Faecal Bacteria Derived from 10- and 25-cycle PCRs. Int J Syst Evol Microbiol, 52(Pt 3): 757–763. https://doi.org/10.1099/00207713-52-3-757

Walker AW, Martin JC, Scott P, et al., 2015, 16S rRNA Gene-Based Profiling of the Human Infant Gut Microbiota is Strongly Influenced by Sample Processing and PCR Primer Choice. Microbiome, 3: 26. https://doi.org/10.1186/s40168-015-0087-4

Aßhauer KP, Wemheuer B, Daniel R, et al., 2015, Tax4Fun: Predicting Functional Profiles from Metagenomic 16S rRNA Data. Bioinformatics, 31(17): 2882–2884. https://doi.org/10.1093/bioinformatics/btv287

Scholz M, Ward DV, Pasolli E, et al., 2016, Strain-Level Microbial Epidemiology and Population Genomics from Shotgun Metagenomics. Nat Methods, 13(5): 435–438. https://doi.org/10.1038/nmeth.3802

Mukherjee S, Seshadri R, Varghese NJ, et al., 2017, 1,003 Reference Genomes of Bacterial and Archaeal Isolates Expand Coverage of the Tree of Life. Nat Biotechnol, 35(7): 676–683. https://doi.org/10.1038/nbt.3886

Franzosa EA, Morgan XC, Segata N, et al., 2014, Relating the Metatranscriptome and Metagenome of the Human Gut. Proc Natl Acad Sci U S A, 111(22): E2329–E2338. https://doi.org/10.1073/pnas.1319284111

Maurice CF, Haiser HJ, Turnbaugh PJ, 2013, Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome. Cell, 152(1–2): 39–50. https://doi.org/10.1016/j.cell.2012.10.052

Bikel S, Valdez-Lara A, Cornejo-Granados F, et al., 2015, Combining Metagenomics, Metatranscriptomics and Viromics to Explore Novel Microbial Interactions: Towards a Systems-Level Understanding of Human Microbiome. Comput Struct Biotechnol J, 13: 390–401. https://doi.org/10.1016/j.csbj.2015.06.001

Sultan M, Amstislavskiy V, Risch T, et al., 2014, Influence of RNA Extraction Methods and Library Selection Schemes on RNA-seq Data. BMC Genomics, 15(1): 675. https://doi.org/10.1186/1471-2164-15-675

Franzosa EA, Hsu T, Sirota-Madi A, et al., 2015, Sequencing and Beyond: Integrating Molecular ‘Omics’ for Microbial Community Profiling. Nat Rev Microbiol, 13(6): 360–372. https://doi.org/10.1038/nrmicro3451

Mallick H, Ma S, Franzosa EA, et al., 2017, Experimental Design and Quantitative Analysis of Microbial Community Multiomics. Genome Biol, 18(1): 228. https://doi.org/10.1186/s13059-017-1359-z

Miao Z, Lin JS, Mao Y, et al., 2020, Erythrocyte n-6 Polyunsaturated Fatty Acids, Gut Microbiota, and Incident Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care, 43(10): 2435–2443. https://doi.org/10.2337/dc20-0631

Abu-Ali GS, Mehta RS, Lloyd-Price J, et al., 2018, Metatranscriptome of Human Faecal Microbial Communities in a Cohort of Adult Men. Nat Microbiol, 3(3): 356–366. https://doi.org/10.1038/s41564-017-0084-4

Schirmer M, Franzosa EA, Lloyd-Price J, et al., 2018, Dynamics of Metatranscription in the Inflammatory Bowel Disease Gut Microbiome. Nat Microbiol, 3(3): 337–346. https://doi.org/10.1038/s41564-017-0089-z

Kolmeder CA, de Vos WM, 2014, Metaproteomics of Our Microbiome – Developing Insight in Function and Activity in Man and Model Systems. J Proteomics, 97: 3–16. https://doi.org/10.1016/j.jprot.2013.05.018

Heintz-Buschart A, May P, Laczny CC, et al., 2016, Integrated Multi-Omics of the Human Gut Microbiome in a Case Study of Familial Type 1 Diabetes. Nat Microbiol, 2: 16180. https://doi.org/10.1038/nmicrobiol.2016.180. Erratum in Nat Microbiol, 2: 16227. https://doi.org/10.1038/nmicrobiol.2016.227

Heintz-Buschart A, Wilmes P, 2018, Human Gut Microbiome: Function Matters. Trends Microbiol, 26(7): 563–574. https://doi.org/10.1016/j.tim.2017.11.002

Satinsky BM, Gifford SM, Crump BC, et al., 2013, Use of Internal Standards for Quantitative Metatranscriptome and Metagenome Analysis. Methods Enzymol, 531: 237–250. https://doi.org/10.1016/B978-0-12-407863-5.00012-5

Stämmler F, Gläsner J, Hiergeist A, et al., 2016, Adjusting Microbiome Profiles for Differences in Microbial Load by Spike-in Bacteria. Microbiome, 4(1): 28. https://doi.org/10.1186/s40168-016-0175-0

Props R, Kerckhof FM, Rubbens P, et al., 2017, Absolute Quantification of Microbial Taxon Abundances. ISME J, 11(2): 584–587. https://doi.org/10.1038/ismej.2016.117

Vilstrup H, Amodio P, Bajaj J, et al., 2014, Hepatic Encephalopathy in Chronic Liver Disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology, 60(2): 715–735. https://doi.org/10.1002/hep.27210

Amodio P, 2015, Hepatic Encephalopathy: Historical Remarks. J Clin Exp Hepatol, 5(Suppl 1): S4–6. https://doi.org/10.1016/j.jceh.2014.12.005

Dharel N, Bajaj JS, 2015, Definition and Nomenclature of Hepatic Encephalopathy. J Clin Exp Hepatol, 5(Suppl 1): S37–S41. https://doi.org/10.1016/j.jceh.2014.10.001

Amodio P, Del Piccolo F, Pettenò E, et al., 2001, Prevalence and Prognostic Value of Quantified Electroencephalogram (EEG) Alterations in Cirrhotic Patients. J Hepatol, 35(1): 37–45. https://doi.org/10.1016/s0168-8278(01)00129-5

Shawcross DL, Wright G, Olde Damink SW, et al., 2007, Role of Ammonia and Inflammation in Minimal Hepatic Encephalopathy. Metab Brain Dis, 22(1): 125–138. https://doi.org/10.1007/s11011-006-9042-1

Mannaioni G, Carpenedo R, Pugliese AM, et al., 1998, Electrophysiological Studies on Oxindole, a Neurodepressant Tryptophan Metabolite. Br J Pharmacol, 125(8): 1751–1760. https://doi.org/10.1038/sj.bjp.0702241

Riggio O, Mannaioni G, Ridola L, et al., 2010, Peripheral and Splanchnic Indole and Oxindole Levels in Cirrhotic Patients: A Study on the Pathophysiology of Hepatic Encephalopathy. Am J Gastroenterol, 105(6): 1374–1381. https://doi.org/10.1038/ajg.2009.738

Oja SS, Saransaari P, Korpi ER, 2017, Neurotoxicity of Ammonia. Neurochem Res, 42(3): 713–720. https://doi.org/10.1007/s11064-016-2014-x

Bajaj JS, Ridlon JM, Hylemon PB, et al., 2012, Linkage of Gut Microbiome with Cognition in Hepatic Encephalopathy. Am J Physiol Gastrointest Liver Physiol, 302(1): G168–G175. https://doi.org/10.1152/ajpgi.00190.2011

Bajaj JS, Hylemon PB, Ridlon JM, et al., 2012, Colonic Mucosal Microbiome Differs from Stool Microbiome in Cirrhosis and Hepatic Encephalopathy and is Linked to Cognition and Inflammation. Am J Physiol Gastrointest Liver Physiol, 303(6): G675–G685. https://doi.org/10.1152/ajpgi.00152.2012

Ahluwalia V, Betrapally NS, Hylemon PB, et al., 2016, Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis. Sci Rep, 6: 26800. https://doi.org/10.1038/srep26800

Henao-Mejia J, Elinav E, Jin C, et al., 2012, Inflammasome-Mediated Dysbiosis Regulates Progression of NAFLD and Obesity. Nature, 482(7384): 179–185. https://doi.org/10.1038/nature10809

Nakajima M, Arimatsu K, Kato T, et al., 2015, Oral Administration of P. gingivalis Induces Dysbiosis of Gut Microbiota and Impaired Barrier Function Leading to Dissemination of Enterobacteria to the Liver. PLoS One, 10(7): e0134234. https://doi.org/10.1371/journal.pone.0134234

Chen Y, Yang F, Lu H, et al., 2011, Characterization of Fecal Microbial Communities in Patients with Liver Cirrhosis. Hepatology, 54(2): 562–572. https://doi.org/10.1002/hep.24423

Kakiyama G, Pandak WM, Gillevet PM, et al., 2013, Modulation of the Fecal Bile Acid Profile by Gut Microbiota in Cirrhosis. J Hepatol, 58(5): 949–955. https://doi.org/10.1016/j.jhep.2013.01.003

Bajaj JS, Heuman DM, Hylemon PB, et al., 2014, Altered Profile of Human Gut Microbiome is Associated with Cirrhosis and Its Complications. J Hepatol, 60(5): 940–947. https://doi.org/10.1016/j.jhep.2013.12.019

Fouts DE, Torralba M, Nelson KE, et al., 2012, Bacterial Translocation and Changes in the Intestinal Microbiome in Mouse Models of Liver Disease. J Hepatol, 56(6): 1283–92. https://doi.org/10.1016/j.jhep.2012.01.019

Fiuza C, Salcedo M, Clemente G, et al., 2000, In Vivo Neutrophil Dysfunction in Cirrhotic Patients with Advanced Liver Disease. J Infect Dis, 182(2): 526–533. https://doi.org/10.1086/315742

Betrapally NS, Gillevet PM, Bajaj JS, 2017, Gut Microbiome and Liver Disease. Transl Res, 179: 49–59. https://doi.org/10.1016/j.trsl.2016.07.005

Schnabl B, Brenner DA, 2014, Interactions Between the Intestinal Microbiome and Liver Diseases. Gastroenterology, 146(6): 1513–1524. https://doi.org/10.1053/j.gastro.2014.01.020

Rose CF, 2012, Ammonia-Lowering Strategies for the Treatment of Hepatic Encephalopathy. Clin Pharmacol Ther, 92(3): 321–331. https://doi.org/10.1038/clpt.2012.112

Campion D, Giovo I, Ponzo P, et al., 2019, Dietary Approach and Gut Microbiota Modulation for Chronic Hepatic Encephalopathy in Cirrhosis. World J Hepatol, 11(6): 489–512. https://doi.org/10.4254/wjh.v11.i6.489

Gheorghe L, Iacob R, Vădan R, et al., 2005, Improvement of Hepatic Encephalopathy Using a Modified High-Calorie High-Protein Diet. Rom J Gastroenterol, 14(3): 231–238.

Campollo O, Sprengers D, Dam G, et al., 2017, Protein Tolerance to Standard and High Protein Meals in Patients with Liver Cirrhosis. World J Hepatol, 9(14): 667–676. https://doi.org/10.4254/wjh.v9.i14.667

Rastall RA, Gibson GR, 2015, Recent Developments in Prebiotics to Selectively Impact Beneficial Microbes and Promote Intestinal Health. Curr Opin Biotechnol, 32: 42–46. https://doi.org/10.1016/j.copbio.2014.11.002

Morgan MY, 2016, Current State of Knowledge of Hepatic Encephalopathy (Part III): Non-Absorbable Disaccharides. Metab Brain Dis, 31(6): 1361–1364. https://doi.org/10.1007/s11011-016-9910-2

Qin N, Yang F, Li A, et al., 2014, Alterations of the Human Gut Microbiome in Liver Cirrhosis. Nature, 513(7516): 59–64. https://doi.org/10.1038/nature13568

van Leeuwen PA, van Berlo CL, Soeters PB, 1988, New Mode of Action for Lactulose. Lancet, 1(8575–6): 55–56. https://doi.org/10.1016/s0140-6736(88)91033-1

Luo M, Li L, Lu CZ, et al., 2011, Clinical Efficacy and Safety of Lactulose for Minimal Hepatic Encephalopathy: A Meta-Analysis. Eur J Gastroenterol Hepatol, 23(12): 1250–1257. https://doi.org/10.1097/MEG.0b013e32834d1938

Jain L, Sharma BC, Srivastava S, et al., 2013, Serum Endotoxin, Inflammatory Mediators, and Magnetic Resonance Spectroscopy Before and After Treatment in Patients with Minimal Hepatic Encephalopathy. J Gastroenterol Hepatol, 28(7): 1187–1193. https://doi.org/10.1111/jgh.12160

Yang N, Liu H, Jiang Y, et al., 2015, Lactulose Enhances Neuroplasticity to Improve Cognitive Function in Early Hepatic Encephalopathy. Neural Regen Res, 10(9): 1457–1462. https://doi.org/10.4103/1673-5374.165516

Moratalla A, Ampuero J, Bellot P, et al., 2017, Lactulose Reduces Bacterial DNA Translocation, Which Worsens Neurocognitive Shape in Cirrhotic Patients with Minimal Hepatic Encephalopathy. Liver Int, 37(2): 212–223. https://doi.org/10.1111/liv.13200

Yang J, Nie QH, Wang AH, et al., 2010, Effects of Intestinal Intervention on Bacterial Translocation in a Rat Model of Acute Liver Failure In Vivo. Eur J Gastroenterol Hepatol, 22(11): 1316–22. https://doi.org/10.1097/MEG.0b013e32833ccaae

DuPont HL, 2011, Biologic Properties and Clinical Uses of Rifaximin. Expert Opin Pharmacother, 12(2): 293–302. https://doi.org/10.1517/14656566.2011.546347

Phongsamran PV, Kim JW, Cupo Abbott J, et al., 2010, Pharmacotherapy for Hepatic Encephalopathy. Drugs, 70(9): 1131–1148. https://doi.org/10.2165/10898630-000000000-00000

Bass NM, Mullen KD, Sanyal A, et al., 2010, Rifaximin Treatment in Hepatic Encephalopathy. N Engl J Med, 362(12): 1071–1081. https://doi.org/10.1056/NEJMoa0907893

Suzuki K, Endo R, Takikawa Y, et al., 2018, Efficacy and Safety of Rifaximin in Japanese Patients with Hepatic Encephalopathy: A Phase II/III, Multicenter, Randomized, Evaluator-Blinded, Active-Controlled Trial and a Phase III, Multicenter, Open Trial. Hepatol Res, 48(6): 411–423. https://doi.org/10.1111/hepr.13045

Eltawil KM, Laryea M, Peltekian K, et al., 2012, Rifaximin vs. Conventional Oral Therapy for Hepatic Encephalopathy: A Meta-Analysis. World J Gastroenterol, 18(8): 767–777. https://doi.org/10.3748/wjg.v18.i8.767

Kang DJ, Kakiyama G, Betrapally NS, et al., 2016, Rifaximin Exerts Beneficial Effects Independent of its Ability to Alter Microbiota Composition. Clin Transl Gastroenterol, 7(8): e187. https://doi.org/10.1038/ctg.2016.44

Mullen KD, Sanyal AJ, Bass NM, et al., 2014, Rifaximin is Safe and Well Tolerated for Long-Term Maintenance of Remission From Overt Hepatic Encephalopathy. Clin Gastroenterol Hepatol, 12(8): 1390–7.e2. https://doi.org/10.1016/j.cgh.2013.12.021

Bajaj JS, Barrett AC, Bortey E, et al., 2015, Prolonged Remission from Hepatic Encephalopathy with Rifaximin: Results of a Placebo Crossover Analysis. Aliment Pharmacol Ther, 41(1): 39–45. https://doi.org/10.1111/apt.12993

Zhang Y, Feng Y, Cao B, et al., 2015, Effects of SIBO and Rifaximin Therapy on MHE Caused by Hepatic Cirrhosis. Int J Clin Exp Med, 8(2): 2954–2957.

DuPont HL, 2015, Therapeutic Effects and Mechanisms of Action of Rifaximin in Gastrointestinal Diseases. Mayo Clin Proc, 90(8): 1116–1124. https://doi.org/10.1016/j.mayocp.2015.04.016

Gao J, Gillilland MG 3rd, Owyang C, 2014, Rifaximin, Gut Microbes and Mucosal Inflammation: Unraveling a Complex Relationship. Gut Microbes, 5(4): 571–575. https://doi.org/10.4161/gmic.32130

Maharshi S, Sharma BC, Srivastava S, et al., 2015, Randomised Controlled Trial of Lactulose Versus Rifaximin for Prophylaxis of Hepatic Encephalopathy in Patients with Acute Variceal Bleed. Gut, 64(8): 1341–1342. https://doi.org/10.1136/gutjnl-2014-308521

Sharma BC, Sharma P, Lunia MK, et al., 2013, A Randomized, Double-Blind, Controlled Trial Comparing Rifaximin Plus Lactulose with Lactulose Alone in Treatment of Overt Hepatic Encephalopathy. Am J Gastroenterol, 108(9): 1458–1463. https://doi.org/10.1038/ajg.2013.219

Sekhar MS, Unnikrishnan MK, Rodrigues GS, 2013, Synbiotic Formulation of Probiotic and Lactulose Combination for Hepatic Encephalopathy Treatment: A Realistic Hope? Med Hypotheses, 81(2): 167–168. https://doi.org/10.1016/j.mehy.2013.05.016

Ray K, 2017, IBS: Mindful of Probiotics for Psychiatric Comorbidities in IBS. Nat Rev Gastroenterol Hepatol, 14(7): 386–387. https://doi.org/10.1038/nrgastro.2017.70

Cheifetz AS, Gianotti R, Luber R, et al., 2017, Complementary and Alternative Medicines Used by Patients With Inflammatory Bowel Diseases. Gastroenterology, 152(2): 415–429.e15. https://doi.org/10.1053/j.gastro.2016.10.004

Ritze Y, Bárdos G, Claus A, et al., 2014, Lactobacillus rhamnosus GG Protects Against Non-Alcoholic Fatty Liver Disease in Mice. PLoS One, 9(1): e80169. https://doi.org/10.1371/journal.pone.0080169

Viramontes Hörner D, Avery A, Stow R, 2017, The Effects of Probiotics and Symbiotics on Risk Factors for Hepatic Encephalopathy: A Systematic Review. J Clin Gastroenterol, 51(4): 312–323. https://doi.org/10.1097/mcg.0000000000000789

Zhao LN, Yu T, Lan SY, et al., 2015, Probiotics can Improve the Clinical Outcomes of Hepatic Encephalopathy: An Update Meta-Analysis. Clin Res Hepatol Gastroenterol, 39(6): 674–682. https://doi.org/10.1016/j.clinre.2015.03.008

Mancini A, Campagna F, Amodio P, et al., 2018, Gut : Liver : Brain Axis: The Microbial Challenge in the Hepatic Encephalopathy. Food Funct, 9(3): 1373–1388. https://doi.org/10.1039/c7fo01528c

Román E, Nieto JC, Gely C, et al., 2019, Effect of a Multistrain Probiotic on Cognitive Function and Risk of Falls in Patients With Cirrhosis: A Randomized Trial. Hepatol Commun, 3(5): 632–645. https://doi.org/10.1002/hep4.1325

Cao Q, Yu CB, Yang SG, et al., 2018, Effect of Probiotic Treatment on Cirrhotic Patients with Minimal Hepatic Encephalopathy: A Meta-Analysis. Hepatobiliary Pancreat Dis Int, 17(1): 9–16. https://doi.org/10.1016/j.hbpd.2018.01.005

Kao D, Roach B, Park H, et al., 2016, Fecal Microbiota Transplantation in the Management of Hepatic Encephalopathy. Hepatology, 63(1): 339–340. https://doi.org/10.1002/hep.28121

Bajaj JS, Kassam Z, Fagan A, et al., 2017, Fecal Microbiota Transplant from a Rational Stool Donor Improves Hepatic Encephalopathy: A Randomized Clinical Trial. Hepatology, 66(6): 1727–1738. https://doi.org/10.1002/hep.29306

Bajaj JS, Kakiyama G, Savidge T, et al., 2018, Antibiotic-Associated Disruption of Microbiota Composition and Function in Cirrhosis is Restored by Fecal Transplant. Hepatology, 68(4): 1549–1558. https://doi.org/10.1002/hep.30037

Bajaj JS, Fagan A, Gavis EA, et al., 2019, Long-term Outcomes of Fecal Microbiota Transplantation in Patients With Cirrhosis. Gastroenterology, 156(6): 1921–1923.e3. https://doi.org/10.1053/j.gastro.2019.01.033

Bajaj JS, Khoruts A, 2020, Microbiota Changes and Intestinal Microbiota Transplantation in Liver Diseases and Cirrhosis. J Hepatol, 72(5): 1003–1027. https://doi.org/10.1016/j.jhep.2020.01.017

Knight R, Vrbanac A, Taylor BC, et al., 2018, Best Practices for Analysing Microbiomes. Nat Rev Microbiol, 16(7): 410–422. https://doi.org/10.1038/s41579-018-0029-9