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Abstract: The role of the gut microbiota in the pathogenesis and treatment of hepatic encephalopathy (HE) has garnered 
increasing attention due to significant advancements in understanding the gut microbiota over recent years. A growing 
body of evidence from laboratory and clinical studies highlights a substantial relationship between gut microbiota and HE. 
Identifying the role of gut microbiota in maintaining normal cognitive function, including its influence on the gut barrier 
and immune cells, is essential to elucidate the mechanisms underlying the development of HE. This understanding offers 
novel perspectives for its prevention and treatment. This paper provides a comprehensive review of the research progress 
concerning the gut microbiota, HE, and their interrelationship, along with current treatment methods for HE. Furthermore, 
it outlines the limitations and challenges associated with microbiota-based therapeutic research.
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1. Gut microbiota
1.1. Awareness of gut microbes
The human gut hosts thousands of microorganisms distributed across various anatomical sites, maintaining 
a stable, symbiotic, and mutually beneficial relationship with their hosts. Macrogenomic studies of the gut 
microbiota in healthy individuals have revealed considerable differences in its composition across individuals [1-3]. 
Each person possesses a unique gut microbiota shaped by their genetic background, physiological status, microbial 
interactions, environmental factors, and diet [4-6].

The relationship between the microbiome and its influences is intricate and bidirectional. External factors 
induce compositional changes that stabilize into an adapted microbiome state, while the microbiome also provides 
feedback to the host through mechanisms such as the production of specific metabolites. Over 500 microbial 
species inhabit the human gut, with microbial diversity typically increasing from infancy to around three years of 
age, at which point it reaches levels comparable to those of adults [7].
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Advances in science and technology have significantly enhanced the understanding of the types of microbes 
present in the gut, their functions, and their roles in human health and disease. The gut microbiota is now 
recognized as an anaerobic bioreactor capable of synthesizing molecules that directly influence the mammalian 
immune system, modify the human epigenome, and regulate host metabolism [8-10].

1.2. Stages of research on the gut microbiota
In recent years, extensive research has been conducted to evaluate the correlation between gut microbiota, disease, 
and external environmental factors. As the depth and scope of studies continue to expand, metagenome-wide 
association studies (MWAS) have emerged as a focus for scientists [11]. The relationship between gut microbiota 
and disease remains complex. For example, in some patients with colorectal cancer [12] or arthritis [13], specific 
marker taxa are associated with the disease but exert a minimal effect on the overall microbial composition, such 
as the reduced abundance of particular bacterial species. Conversely, certain disease states are significantly linked 
to broader compositional changes in the microbiota. For instance, reduced species diversity or richness has been 
observed in patients with obesity [14] or inflammatory bowel disease [15].

It remains unclear in most cases whether microbiota dysbiosis triggers the onset of the disease or whether the 
disease itself induces changes in the microbiota. Furthermore, recent studies have demonstrated limited ability to 
explain microbial variations [16], potentially due to the low accuracy of current taxonomic classification systems [17].

1.3. Methods for studying the gut microbiota
The development of new experimental techniques and methods is crucial for advancing the study of gut 
microbiota. However, these methods face inherent limitations, such as amplification bias [18], primer bias [19], 
and restricted functional insights [20]. Whole-genome analysis offers advantages, including the ability to provide 
information on the relative abundance of functional genes, high-resolution identification, and population-averaged 
genomes through gene assembly [21,22]. However, it also presents challenges, such as bias introduced by host 
DNA or organelle contamination, library construction, and the assembly and annotation of reference databases. 
Additionally, this method struggles to distinguish between samples.

While transcriptome sequencing analysis captures intra-individual microbial dynamics [23] and directly 
assesses microbial activity (e.g., interference or exposure) [24], it is one of the most expensive, labor-intensive, and 
complex techniques [25]. It also requires the exclusion of host mRNA and is prone to contamination by rRNA [26].

To address these challenges, multi-omics analysis, absolute quantitative microbial analysis (QMP), and other 
methods have been developed. Multi-omics approaches complement macro-genomic studies by integrating macro-
transcriptomic, macro-proteomic, and macro-metabolomic analyses [27,28]. In recent years, metabolomic studies 
have been employed to assess associations between gut flora, metabolites, and diseases, such as the relationships 
between serum metabolites and type II diabetes [29]. Additionally, macro-transcriptomic studies can directly 
reveal microbial gene expression and provide insights into potential microbial functions [30,31]. In contrast, macro-
proteomic analyses remain limited, with only a few pilot-scale studies conducted to date [32,33]. The characteristics, 
advantages, and limitations of these various methods are summarized in Table 1.

Despite their potential, multi-omics studies face several challenges. The integration of heterogeneous 
data types and compositions creates a complex chain of evidence that must be analyzed holistically [27,33]. This 
complexity also affects the understanding of key microbiome concepts, such as the significance of functional 
plasticity [34]. Absolute quantitative microbiological analyses offer improvements in sensitivity and accuracy for 
microbiome association studies. These advances are primarily achieved through the use of internal markers [35], the 
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introduction of exogenous bacteria to quantify absolute bacterial abundance [36], and flow cytometry [37].

2. The gut microbiota and hepatic encephalopathy
2.1. Hepatic encephalopathy
Hepatic encephalopathy (HE) refers to brain dysfunction caused by hepatic insufficiency and/or portal system 
shunting. It encompasses a continuum of symptoms ranging from cognitive impairment to coma, with key clinical 
manifestations including altered consciousness, behavioral disturbances, and coma [38]. The association between 
liver disease, particularly jaundice, and emotional or behavioral disturbances dates back to Hippocrates, the father 
of Western medicine (460–371 B.C.) [39]. However, experimental studies in the late 19th and 20th centuries began 
elucidating the pathophysiological mechanisms underlying this relationship, identifying behavioral changes as 
consequences of chronic liver insufficiency and liver disease.

HE is classified into covert hepatic encephalopathy (CHE) and overt hepatic encephalopathy (OHE) based on 
the severity of its clinical manifestations [40]. It is well-documented that HE is a primary cause of hospitalization 
in patients with cirrhosis. Evidence suggests that OHE occurs in 30–40% of patients with cirrhosis during their 
clinical course [41].

2.2. Occurrence and progression
HE represents a typical model of gut-liver-brain axis disease, although its pathogenesis remains unclear. There is 
growing consensus that alterations in gut microbial composition and its metabolic by-products, local and systemic 
inflammation, and a compromised intestinal barrier (leaky gut) collectively contribute to the development of HE [42]. 
Among the microbial by-products, indole and ammonia are particularly neurotoxic. Indole interacts with voltage-
gated sodium channels in the brain, acting as a sedative that induces coma in both human and animal models [43,44]. 
Ammonia disrupts pH levels, membrane potential, cellular metabolism, and neurotransmission, leading to 
astrocyte swelling and brain edema [45].

The composition of the sigmoid colon microbiota in patients with HE differs significantly from that of 
healthy individuals [46]. In HE patients, the abundance of Roseburia is reduced, while Enterococcus, Veillonella, 
Megasphaera, and Burkholderia are elevated. Cognitive performance and lower inflammation markers 
have been associated with Blautia, Faecalibacterium, Roseburia, and Dorea, whereas cognitive deficits 
correlate with Enterococcus, Streptococcus, Burkholderiaceae, Veillonellaceae, Megasphaera, Rikenellaceae, 
Alistipes, Streptococcaceae, Alcaligenaceae, Sutterella, Porphyromonadaceae, and Parabacteroides. Notably, 
Alcaligenaceae produce ammonia via urea degradation, potentially linking them to cognitive impairments. Bajaj 
et al. also reported that Enterobacteriaceae, Fusobacteriaceae, and Veillonellaceae are positively correlated with 
inflammation, while Ruminococcaceae are negatively correlated [47].

The association between altered gut microbiota and neurological deficits in patients with cirrhosis (with 
or without HE) has been further clarified through nuclear magnetic resonance spectroscopy and magnetic 
resonance diffusion tensor imaging. Patients with HE exhibit an increased abundance of Staphylococcaceae, 
Enterococcaceae, and Porphyromonadaceae compared to those without HE [48]. Animal studies have shown that 
Porphyromonadaceae is linked to cognitive dysfunction and the development of fatty liver disease [46,49,50]. Brain 
MRI spectra have revealed positive correlations with Streptococcaceae, Enterobacteriaceae, and Lactobacillus, 
as well as negative correlations with Spirulinaceae, Ruminococcaceae, and Clostridium perfringens. It has been 
established that Spirulinaceae, Clostridium tumefaciens, and Clostridium tetradecium dominate healthy gut 
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microbiota, contributing to short-chain fatty acid (SCFA) production and bile acid 7-alpha dehydroxylation [51,52]. 
As cirrhosis progresses, the abundance of Lactobacillaceae and Streptococcaceae decreases, while potentially 
harmful bacteria, such as Streptococcaceae and Enterobacteriaceae, increase [53]. Interestingly, Ahluwalia et al. 
reported an increase in Lactobacillaceae in the fecal samples of HE patients and cirrhosis mouse models [48,54].

Patients with cirrhosis are particularly susceptible to dysbiosis due to the diverse pathological interactions 
between the liver and gastrointestinal tract, which have significant clinical implications. Altered intestinal 
dynamics, elevated gastric pH, and reduced colonic bile acid concentrations in cirrhotic patients can lead to 
uncontrolled bacterial overgrowth. Furthermore, cirrhosis impairs the liver’s ability to regulate systemic immune 
responses. Compared to controls, cirrhotic patients exhibit increased monocyte proliferation and chemotaxis but 
significantly reduced neutrophil activity [55]. This disruption compromises the intestinal barrier, promotes bacterial 
translocation, and heightens the risk of intestinal bacterial infections and liver failure [56,57].

3. Treatment of hepatic encephalopathy
Current clinical treatments for HE primarily focus on regulating gut microbiota to reduce pathogenic bacteria, 
bacterial urease activity, and intestinal pH. This, in turn, decreases ammonia production and absorption [51,52,58]. 
Common treatment methods include dietary interventions, lactulose, the antibiotic rifaximin, probiotics, and fecal 
microbiota transplantation (Figure 1). Although these approaches have demonstrated therapeutic efficacy, concerns 
persist among some experts regarding their long-term effectiveness and potential side effects in clinical practice. 
This underscores the need to develop novel treatment strategies informed by a comprehensive understanding of the 
underlying mechanisms of gut microbiota.

3.1. Dietary interventions
As gut microbiota are closely linked to dietary habits and play a pivotal role in HE pathogenesis, dietary 
interventions have been proposed as a potential treatment for alleviating HE symptoms [59]. Traditionally, it was 
believed that protein catabolism increased ammonia levels, leading to recommendations for protein restriction 
in patients with HE. However, recent studies have shown that normal protein intake is both well-tolerated and 
beneficial in HE, ensuring sufficient substrates for energy synthesis and liver function [60,61]. Consequently, experts 
now strongly recommend avoiding protein restriction in patients with HE.

3.2. Lactulose
Lactulose, a synthetic disaccharide composed of lactose and galactose, is classified as a prebiotic. A distinctive 
feature of prebiotics is their resistance to absorption in the gastrointestinal tract. Lactulose, along with other non-
absorbable disaccharides such as inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS), 
stimulates the growth and activity of beneficial gut bacteria, such as bifidobacteria [62].

Lactulose reduces ammonia production and absorption through several mechanisms:
(1) Osmotic effect: It increases osmotic pressure and lowers pH in the intestinal lumen [63].
(2) Ammonia utilization: It promotes bacterial uptake of ammonia for protein synthesis [64].
(3) Inhibition of glutaminase activity: It reduces intestinal glutamine absorption and its subsequent conversion 

to ammonia [65].
Numerous studies have focused on the role of lactulose in improving quality of life and cognitive function 
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in HE patients. In 2014, the American Association for the Study of Liver Diseases (AASLD) and the European 
Association for the Study of the Liver (EASL) jointly recommended lactulose as a treatment for overt HE [38]. 
Compared to placebo or no intervention, lactulose significantly reduces the risk of overt HE, lowers blood 
ammonia levels, and enhances health-related quality of life [66].

In patients with mild HE, lactulose decreases arterial ammonia levels, inflammatory markers (e.g., TNF-α, IL-
6, IL-18), and serum endotoxins [67]. Animal studies have demonstrated that lactulose increases neuroplasticity by 
promoting neurite growth and enhancing the formation of new neurons in the hippocampus. Lactulose also exerts 
neuroprotective effects by increasing glial fibrillary acidic protein (GFAP)-immunoreactive cells [68].

Furthermore, lactulose has been shown to reduce bacterial DNA translocation in mild HE patients, resulting 
in lower serum ammonia levels and improved neurocognitive performance [69]. Approximately one-third of mild 
HE patients experience inflammatory bacterial antigen translocation, which lactulose reduces to 16%. This effect 
has also been observed in a rat model of acute liver failure, suggesting that lactulose inhibits bacterial translocation 

Figure 1. Schematic representation of microbiota in the progression of hepatic encephalopathy. In HE, gut dysbiosis 
increases metabolites like indole, ammonia, and endotoxins, which affect the brain via the portal venous, immune, 
and nervous systems, leading to coma, cell swelling, hydrocephalus, and HE. Treatments such as lactulose, rifaximin, 
antibiotics, and FMT reduce pathogenic bacteria, bacterial urease activity, glutaminase activity, and pH, while decreasing 
bacterial translocation. These interventions lower the production or absorption of ammonia, indole, and endotoxins, 
enhance immune function, reduce brain damage, restore ammonia balance, increase neurons, and improve cognition.
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and alleviates HE symptoms by improving intestinal permeability, accelerating intestinal transit, and reducing 
small intestinal bacterial overgrowth [69,70].

3.3. Rifaximin
Rifaximin, a derivative of rifamycin, inhibits bacterial RNA and protein synthesis by irreversibly binding to the 
β-subunit of bacterial DNA-dependent RNA polymerase [71]. It targets a broad spectrum of intestinal aerobic and 
anaerobic bacteria [72]. In cirrhotic patients with HE-related symptoms, rifaximin has been shown to lower serum 
ammonia levels, significantly improve neurological signs and symptoms of overt HE, prevent HE episodes, and 
reduce hospitalization rates [73,74].

Rifaximin has also demonstrated efficacy in treating acute HE [75]. In two long-term randomized, non-blinded 
studies, rifaximin improved neurological and neuromotor abnormalities associated with cirrhosis and reduced the 
recurrence of HE episodes [76,77]. Bajaj et al. further highlighted rifaximin’s effectiveness in preventing HE relapse [78].

Short-term rifaximin administration reduces blood ammonia levels, improves psychometric test scores, and 
decreases small intestinal bacterial overgrowth [79]. Moreover, rifaximin has a direct impact on intestinal barrier 
function and the metabolome [80,81]. A study investigating metabolic and microbial changes following rifaximin 
treatment found increased levels of eubacteria and beneficial bacterial species, reduced oxidative stress, and 
decreased production of aromatic amino acids and nitrogen. A reduction in Verrucomicrobiaceae levels was 
also observed in fecal samples. The development of HE, particularly mild HE, has been linked to increased 
Eubacterium vulgaris in the feces and colonic mucosa of cirrhotic patients [82].

Overall, research indicates that rifaximin improves HE by modulating bacterial metabolic function rather than 
altering overall bacterial abundance.

3.4. Combined treatment
Sharma et al. conducted a prospective randomized study involving 120 patients with cirrhosis to evaluate the 
synergistic effects of rifaximin and lactulose in the treatment of overt hepatic encephalopathy (OHE). The 
combination therapy of rifaximin and lactulose was found to be significantly more effective in achieving complete 
regression of HE compared to lactulose alone (76% vs. 44%, respectively) [83]. Additionally, the combined 
treatment reduced mortality rates in OHE patients relative to lactulose monotherapy.

The impact of combined rifaximin and lactulose therapy on the composition of mucosal flora was also 
investigated. This combination significantly reduced the abundance of Rothschildia spp., Lauterichia spp., and 
Veronococcaceae, while increasing the abundance of Propionibacterium spp. compared to lactulose alone [47]. 
Another study demonstrated that combined treatment with lactulose and rifaximin was more effective than 
monotherapy in improving cognitive function and reducing ammonia levels. Collectively, these findings suggest 
that combination therapies can enhance treatment efficacy by targeting multiple physiological levels [84].

3.5. Probiotics
In addition to sugars and antibiotics, probiotics play a crucial role in the treatment of HE. Probiotics have been 
shown to be effective in managing irritable bowel syndrome [85], ulcerative colitis [86], and non-alcoholic fatty liver 
disease [87], with an even more pronounced impact on HE. Studies indicate that probiotics increase the abundance 
of beneficial flora, reduce pathogenic bacteria, lower physical and psychosocial disease impact scores, and 
significantly reverse minimal hepatic encephalopathy (MHE), thereby reducing the occurrence of OHE [88,89].
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The therapeutic rationale for probiotics is based on the hypothesis that the pathogenesis of HE is linked 
to harmful microbial by-products, such as ammonia and indoles. The increased concentration of these toxic 
metabolites, combined with the impaired clearance function of the diseased liver, results in significant 
pathophysiological effects. Probiotic supplementation helps reduce ammonia levels by promoting the growth of 
beneficial bacteria, such as Bifidobacteria and Lactobacilli, thereby restoring balance to the intestinal microbiota [90].

A recent study further revealed that probiotics significantly reduced levels of C-reactive protein, tumor 
necrosis factor (TNF), FABP-6, and claudin-3, while markedly increasing neutrophil oxidation in HE patients 
receiving probiotic intervention [91]. These effects contributed to maintaining intestinal flora homeostasis by 
enhancing immune adaptability. 

3.6. Fecal microbiota transplantation
Although lactulose and rifaximin are standard treatments for HE, recurrent HE is associated with high rates of 
disability and mortality. Additionally, both treatments are associated with issues such as microbial resistance and 
adverse side effects. Probiotics, while beneficial, have not been shown to be superior to lactulose or antibiotics in 
achieving remission in HE patients [92], highlighting the need for novel therapeutic approaches.

Growing research into advanced liver cirrhosis and HE has recognized the potential of fecal microbiota 
transplantation (FMT) as a treatment for recurrent HE. In one case study, a male patient with HE (MELD score 10) 
received FMT over five consecutive weeks. Improvements in concentration, serum ammonia levels, and quality 
of life were observed during the study period, with no hospitalizations reported. However, the beneficial effects of 
FMT did not persist after discontinuation, suggesting that heterologous microbiota did not colonize the new host, 
and repeated treatments may be necessary to maintain the therapeutic effect [93].

Larger sample sizes are needed to support and validate these findings. A recent non-blinded randomized 
controlled trial (RCT) evaluating the safety of FMT for recurrent HE reported a reduced incidence of serious 
adverse events in the FMT group (20%) compared to the control group (80%). FMT also increased the relative 
abundance of commensal bacterial groups, such as Lactobacillaceae, Bifidobacteriaceae, and Ruminococcaceae [94].

Furthermore, antibiotic pretreatment combined with FMT has been shown to improve intestinal dysbiosis 
and reduce hospitalizations. Bajaj et al. demonstrated that FMT restores the diversity of intestinal microbiota 
diminished by antibiotic use, while also addressing changes in short-chain fatty acids and bile acids [95]. 
Over longer periods, patients with HE who received antibiotic pretreatment combined with FMT exhibited 
improvements in clinical symptoms and cognitive function [96].

These findings confirm the significant therapeutic potential of FMT in treating HE. However, current studies 
primarily focus on the structural and functional changes in intestinal microorganisms and the safety of FMT [97]. 
Further research is required to identify the specific effective flora and metabolites, as well as the precise pathways 
and mechanisms underlying FMT’s therapeutic effects.

4. Conclusion and perspective
The gut microbiota plays a pivotal role in human health and disease. Correcting microbiota dysbiosis and restoring 
normal gut microbiota has been reported to alleviate disease symptoms and complications, including advanced 
severe liver diseases such as cirrhosis and hepatic encephalopathy (HE). However, current clinical research on HE 
primarily focuses on cognition, metabolites, the inflammatory environment, and the composition and function of 
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intestinal microbiota, with several limitations.
Most studies investigating the treatment of diseases through the improvement of intestinal flora are restricted 

to animal models or isolated cases. While these studies have yielded promising results, differences in systems and 
physiology between humans and animals pose significant challenges in generalizing these findings to humans. 
Furthermore, in animal studies involving mice, factors such as fecal feeding behavior and cage effects can 
contribute to inaccuracies [98].

It is important to note that the efficacy of intestinal microbiota-based treatments depends on factors such as 
the donor, the composition of the microbiota, the route of transplantation, and other variables. Additionally, the 
lack of long-term follow-up studies and appropriate controls hinders the assessment of potential adverse reactions, 
thereby affecting the broader application and promotion of these treatments.

Moreover, research on the role of gut microbiota in the early development of the nervous system is limited, 
and it remains unclear whether gut microbiota influences the occurrence and progression of related diseases 
in adulthood. To confirm that adjustments to intestinal flora can improve patient symptoms and prevent the 
progression of HE, more randomized controlled trials are required. Such studies should focus on changes in the 
composition of intestinal flora, the features of its metabolic products, their impact on the host, and the specific 
mechanisms involved.
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