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Abstract: To ensure the supply and demand balance of integrated energy systems (IES) in the electric-carbon market 
and solve the complicated interest relationship among participants in the system, a distributed optimal scheduling model 
based on the extended carbon emission flow theory of integrated energy systems was proposed. Firstly, hydrogen energy 
production and utilization devices are introduced into the energy supply side to establish an expanded carbon emission 
flow model of the hydrogen-energy coupling integrated energy system based on carbon emission flow theory. Then, the 
fuzzy membership function is used to characterize the uncertainty of wind and light output. The distributed optimization 
algorithm based on goal cascade analysis realizes the decoupling of the integrated energy service provider and the user. 
This achieves the independent solution of the integrated energy service provider. A numerical example is given to verify 
that the proposed strategy can realize the stable and optimal operation of the integrated energy system in an uncertain 
environment.
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1. Introduction
The integrated energy system (IES) breaks the original “electricity” energy form to meet the supply 
and demand balance of various energy forms of electricity and gas, so it is believed that IES has great 
potential in carbon emission reduction [1–2]. With the continuous increase of the usage rate of renewable 
energy, its output volatility and randomness bring great challenges to the operation of the system. 
Therefore, how to cope with the stable operation of electric-carbon coupling supply and demand under 
the uncertain environment of renewable energy output has become a current research hotspot [3–5].

At present, some research results have been obtained in the optimization and market trading of 
IES. A study considers the collaborative optimal scheduling of the electric heating integrated energy 
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system with electric heating demand response and fully mobilizes the flexible resources on the load 
side to reduce the economy and carbon emissions of the system operation [6]. Another study establishes 
the system “carbon emission flow” model, considers the flow of carbon emission flow in energy 
hub units, combines the power grid and gas network system with the energy hub, and implements 
demand response through CEF to achieve low-carbon economic operation [7]. Based on the improved 
consistency algorithm, a study proposes a distributed mechanism of IDR in industrial parks, which 
can be consistent between the optimal IDR scheme of individual users and the optimal IDR scheme of 
the whole park under a balanced state [8]. The above research provides a good idea for the research of 
distributed demand response.

The current research on the impact of uncertainty of new energy output on the operation of the 
electric power energy system is relatively comprehensive [9–11]. However, the effect of considering the 
balance of electro carbon coupling system in an uncertain environment is relatively small. To sum up, 
under the electric-carbon coupling market environment, it is necessary to consider the uncertainty of 
new energy output to realize the stable operation of system supply and demand.

Given the above problems, this paper takes into account the randomness of wind-wind output 
and proposes a distributed optimization model of the integrated energy system based on the carbon 
emission flow theory. Firstly, the internal coupling utilization of hydrogen energy is considered in 
the IES system, and the carbon emission flow theory is introduced into the hydrogen energy coupled 
integrated energy system (HIES). Secondly, the wind-wind uncertain output model is established based 
on the chance fuzzy theory, and the distributed source load coordination optimization scheduling under 
uncertainty is established according to the above-established source load model. The target cascade 
analysis method is adopted to solve the distributed solution of the integrated energy production unit to 
maximize the operating profit.

2. HIES system model and carbon emission flow model
The structural composition of the HIES model of the H-energy coupled integrated energy system 
considered in this paper is shown in Figure 1.

Figure 1. HIES structure
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Based on the HIES framework of the hydrogen-energy coupled system in Figure 1 above, 
the effective conversion between different energy forms is realized. The CEF theoretical model is 
introduced to analyze the carbon emissions in the process of energy production and conversion, 
transfer the responsibility of carbon emissions from the source side to the user side, and realize the 
interactive carbon emission reduction between supply and demand.

3. Consider an uncertain source-load distribution model
3.1. Objective function
The goal of energy supply for integrated energy service providers is to maximize operating profits, 
including external energy purchase cost, operation and maintenance cost, wind and light abandonment 
cost, demand response compensation cost, and income from energy sales.

(1)

Where FHIES represents the operating profit of comprehensive energy service providers; Ct
sell is 

energy supply revenue for operators to users; Ct
buy is external purchasing and selling capacity expenses 

for service providers; Ct
om is the operating cost of the equipment; Ct

dis is the cost of abandoning wind 
and light; Ct

IDR is to compensate user demand response costs; ∆t =1 hour.
(2)
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(5)

(6)

Where Ce,t
user, Ch,t

user is the unit price of electricity and heat sold by service providers to users 
respectively. Pe,t

user, Ph,t
user is amount of power supply and heat supply for service providers to users 

respectively. Ce,t
buy, Ce,t

grid, Cg,t
buy is the unit price of external purchase, sale of electricity and purchase 

of gas for service providers respectively Pe,t
buy, Pg,t

buy, Pe,t
grid refers to the external purchase, sale and 

purchase of electricity and gas by the service provider; ck
om, Pk,t is the operating cost factor of the k 

equipment and the energy consumption/production of the t period, respectively. cdis is the cost factor 
of wind and light abandonment; Pe,t

wt, Pe,t
wt,pre, Pe,t

pv, Pe,t
pv,pre is the actual consumption and predicted 

amount of wind power and photovoltaic respectively; Ce
cut, Ch

cut is the compensation unit price of 
electricity and heat load reduction respectively; Pe,t

cut, Ph,t
cut is the reduction of electrical and thermal 

load respectively.

3.2. Constraint condition
The constraints of the IES scheduling model mainly include wind-power constraint, coupling device 
constraint, energy balance constraint, energy storage device constraint, and tie-line constraint.
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3.2.1. Constraints on wind power and photovoltaic output
The output of new energy is easily affected by natural conditions and other external unknown factors, 
and there are still errors between the predicted results and the actual power output and load power. It is 
necessary to introduce fuzzy parameters of wind power and photovoltaic [12].

3.2.2. Operation constraints of coupling equipment
(7)

(8)

Among them, k = {CHP, GB, EL, SMR, HF}. Pk
max is the maximum output power of device k. 

∆Pk,t
min, ∆Pk,t

max indicate the maximum downward and upward climbing power of the device.
 

3.2.3. Energy balance constraint

(9)     

Where Pe,t
cha, Pe,t

dis, PH,t
cha, PH,t

dis are the charging and discharging power of the storage and 
hydrogen devices respectively.

3.2.4. Energy constraint of the liaison line

(10)

Where Pe,max
sell and Qg,max

buy are respectively the upper limits of the contact lines of the electricity 
and gas networks.

4. Distributed optimization model based on objective cascade analysis
Based on the idea of analytical target cascading (ATC), the decoupling between integrated energy 
service providers and distributed users is realized [13]. Therefore, the coupling variables between 
the integrated energy service provider and the user are electric power and thermal power. When the 
integrated energy service provider is solving its own economic optimization operation, the optimal 
scheduling results obtained through decision optimization are passed to the lower user body as a 
decision variable. Here, only comprehensive energy service providers are independently solved.

After ATC decoupling is adopted, the objective function model of comprehensive energy service 
providers is updated as follows.

(11)
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Where Xi,t is the interactive power value that user i optimizes and feeds back to the integrated 
energy service provider; X̄i,t is the coupling variable reference value optimized by the integrated 
energy service provider and transmitted to user i.

 
5. Example analysis
This paper takes an integrated energy system in a northern region as an example, which contains one 
integrated energy service provider with hydrogen energy coupling and three types of integrated energy 
users. Equipment operating parameters, wind power, photovoltaic output, and user load data are cited [12]. 
The price of natural gas is 3 ¥/m3, and the heating value is 39 MJ/m3. The upper limit values of transferable 
load and reducible load in electrical load and heat load are 20% and 10% of the total load respectively. 
The wind-landscape output confidence level is set to 0.9.

 

(a) Electric power optimal scheduling results (b) Thermal power optimization scheduling results

(c) Hydrogen power optimal scheduling results (d) Gas power optimal scheduling results

Figure 2. Power scheduling results of electricity, heat, hydrogen, and gas
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Distributed optimization model considering carbon emission theory and uncertainty of wind 
power and photovoltaic of the integrated energy service provider unit output and the energy required 
by each user is shown in Figure 2. The carbon emission factors of electricity, heat, and hydrogen 
energy flow in the system are shown in Figure 3.

Figure 3 shows the size of the carbon potential of each energy flow in the system. It can be seen 
that the carbon emission factors and trends of electricity, heat, and hydrogen energy flows are basically 
the same. From 9:00 to 21:00, the carbon emission factor suddenly increases, which is because the 
demand for electricity and heat load increases during this period, and they are in the peak period of 
energy consumption as shown in Figure 2(a) and Figure 2(b). As shown in Figure 2(c), the optimal 
scheduling results of hydrogen power in this period are mainly SMR. Therefore, the carbon potential 
of hydrogen energy rises. In this period, GB and CHP mainly consume natural gas for energy supply 
(Figure 2(d)), which also leads to the increase of carbon emission factors in this period. Therefore, the 
carbon emission flow model considering hydrogen energy expansion in this paper can more accurately 
reflect the carbon emission of the system and track the carbon footprint of the system.

Figure 3. Carbon emission factors of each energy flow

6. Conclusion
Based on the carbon emission flow theory, this paper established a distributed and coordinated 
optimization scheduling model of the supply and demand of the integrated energy system containing 
hydrogen energy coupling under the uncertain wind-wind output environment. The following 
conclusions can be obtained through the calculation example verification.

The uncertainty of the output is described based on fuzzy chance constraints, and the distributed 
optimal scheduling strategy is adopted to realize the stable operation of the system.

The extended carbon emission flow theoretical model considering the coupling of hydrogen 
and energy ascribes the responsibility of system carbon emission to the energy consumption side, 
which can reflect the dynamic changes of system carbon emission factors more completely and more 
accurately.
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