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Abstract: Factor analysis is an important way of data mining which can be performed using MATLAB, Python, and so on. 

We studied the urban competitiveness of Southwest cities in China using factor analysis. Two factors were extracted among 

22 original variables. The factor score of cities was obtained using Python and were classified into three categories: 

Chongqing, Chengdu, Kunming and Guiyang are the first-tier cities; Baoshan, Pu’er, Lincang and Lijiang cities are of the 

lowest tier; the remaining cities belong to the second tier. 
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1. Introduction 

Factor analysis is an important way of data mining. The purpose of it is dimension reduction [1–3]. In this 

study, factor for urban competitiveness. Urban competitiveness refers to a city’s competitive advantage 

compared to other cities, its ability to create wealth. It is a comprehensive reflection of a city’s production 

capacity, quality of life, social progress and external influence in a certain period [4,5]. A city with a good 

competitiveness can not only improve the living standards of people in the region, but also promote the 

overall competitiveness of a country as well [6-8]. Therefore, the study of city competitiveness has been a 

hot topic for discussion. 

We studied the urban competitiveness of 33 cities in southwest China using factor analysis in this 

paper. Among 22 original variables, we extracted two factors and obtained a comprehensive evaluation of 

the competitiveness about cities. 

 

2. Factor analysis and original variables 

2.1. Factor analysis 

Factor analysis originated in the early 20th century, when scholars such as K. Pearson and C. Pearman 

made statistical analysis to define and measure intelligence [9]. Factor analysis is used to describe the 

covariance or correlation between the original variables with several potential and unobservable random 

variables (factors). It reflects most of the information of original variables with fewer independent factors, 

which can be expressed by mathematical models. P represents the original variables, the mean value of 

each variable (or after normalization) is 0, and the standard deviation is 1. Each of the original variables is 

expressed as a linear combination of factors as shown below. 
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The above model is the mathematical model of factor analysis, which can also be expressed as 

𝑋 =  𝐴𝐹 +  ԑ in matrix form. F represents the common factor, since they appear in the linear expression 

of each original variables; A represents the factor loading matrix; 𝑎𝑖𝑗(𝑖 = 1,2, … , 𝑝; 𝑗 = 1,2, … , 𝑘) 

represents factor loading, it is the load of the i-th original variable on the j-th factor;   represents special 

factors; it means the part of the original variables that cannot be explained by common factors and its mean 

value is 0. 

The goal of establishing the mathematical model of factor analysis is to obtain the load matrix. This 

can be done using SPSS, MATLAB, Python, and many more. Python is used in this paper. 

 

2.2. Original variables 

There are many factors that affect the competitiveness of cities, such as the GDP, the fiscal revenue, the 

educational development, the infrastructure condition, and the degree of opening. After analyzing a large 

number of indicators in “2020 China City Statistical Yearbook” [10], 22 original variables were selected and 

the following indicator system was constructed (Table 1). 

 

Table 1. Urban comprehensive strength evaluation index system 
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Level indicators The secondary indicators Unit Serial number 

Economic 

development index 

Gross regional product 100 million yuan X1 

GDP Per capita 100 million yuan X2 

Total retail sales of consumer goods 10,000 yuan X3 

Local general public revenue 10,000 yuan X4 

Local general public expenditure 10,000 yuan X5 

Annual savings balances of financial 

institutions 

10,000 yuan X6 

Average wage 10,000 yuan X7 

Profits of industrial enterprises above 

designated size 

10,000 yuan X8 

Ratio of tertiary industry to GDP Percent (%) X9 

Degree of openness 
Actual utilization of foreign capital 10,000 dollars X10 

Total import and export 10,000 yuan X11 

Technology and 

education  

Number of students in institutions of higher 

learning 

Person X12 

Number of students in secondary vocational 

schools 

Person X13 

Books in the public library 10,000 volumes X14 

Number of patents granted – X15 
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3. Mathematical model and main results 

3.1. Premise of factor analysis 

One of the main tasks of factor analysis is to extract and synthesize the overlapping information in the 

original variables into factors, so as to finally achieve the purpose of dimension reduction. Therefore, it 

requires a strong correlation between the original variables. The correlation between the original variables 

can be determined using the following ways. 

(i) Calculate the correlation coefficient matrix 

Calculate the correlation coefficient matrix of the original variables and observe its correlation matrix. 

If most of the correlation values in the correlation coefficient matrix are less than 0.3, the variables are 

weakly correlated, then these variables are not suitable for factor analysis. 

(ii) Calculate anti-Image correlation matrix 

The reflection image matrix mainly includes negative partial covariance and negative partial 

correlation coefficient. If the absolute value of most other elements (except the main diagonal element) 

in the image correlation matrix is small, and the value of the diagonal element is close to 1, it means 

that these variables are strongly correlated and are suitable for factor analysis. 

(iii) Bartlett’s test of sphericity 

Bartlett’s test of sphericity takes the correlation coefficient matrix of the original variable as the starting 

point. As for the null hypothesis, H0, the correlation coefficient matrix is the unit matrix. If the observed 

value of the statistic is large and the corresponding probability P is less than the given significance 

level  , the null hypothesis should be rejected and the original variables are considered suitable for 

factor analysis. Otherwise, the null hypothesis is accepted thus the original variables are considered 

not suitable for factor analysis. 

(iv) Kaiser–Meyer–Olkin (KMO) test 

The KMO test is used to compare the simple correlation coefficient and partial correlation coefficient 

between variables. The KMO value is between 0 and 1. The closer the KMO value is to 1, the stronger 

the correlation between the variables, and the more suitable the original variables are for factor analysis. 

The closer the KMO value is to 0, the weaker the correlation between variables, and the less suitable 

they are for factor analysis. A commonly used KMO metric will be as the following: > 0.9 means a 

good fit, 0.8 means suitable, 0.7 means normal, 0.6 means not suitable, < 0.5 means not suitable. 

By using Python to obtain the correlation coefficient matrix and through the analysis of the correlation 

coefficient matrix, the variables we selected are suitable for factor analysis. 

 

3.2. Extraction of common factors and comprehensive score 

The characteristic roots from correlation coefficient matrix were obtained. And the cumulative sum of 

characteristic roots are as follows. 

Level indicators The secondary indicators Unit Serial number 

Infrastructure 

Number of urban employees insured by basic 

medical insurance 

Person X16 

Hospital beds Piece X17 

Number of hospitals – X18 

Per capita electricity consumption Degree X19 

Green area Hectare X20 

Drain length Kilometers X21 

Investment in fixed assets of public facilities 10,000 yuan X22 
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[16.96924052 18.7946781 19.90447637 20.62479234 21.21245723 21.50483717 21.74137291  

21.84583375 21.92468486 21.94986647 21.96799909 21.97854387 21.98565612 21.99039744  

21.99336265 21.99545513 21.99693689 21.99850156 21.99865236 21.99888999 21.99952717 22.] 

 

The cumulative contribution rate of two factors is 0.854. There are usually two ways to determine the 

number of factors. One way is to select the characteristic roots with eigenvalues greater than 1. The other 

way is to select the number of characteristic roots with cumulative variance contribution rates greater than 

0.85 as the number of factors. In this study, two factors were selected using the latter way. The factor 

analysis model is as follows: 

 

X10 = 0.98942079f1 − 0.12456659f2 + 0.00552336 

X20 = 0.62563469f1 + 0.21127558f2 + 0.56421493 

X30 = 0.98741399f1 − 0.12342195f2 + 0.00977126 

X40 = 0.98923312f1 − 0.13591814f2 + 0.00294806 

X50 = 0.91271988f1 − 0.37681267f2 + 0.02499427 

X60 = 0.99374621f1 + 0.06319377f2 + 0.00849924 

X70 = 0.35457916f1 + 0.06841186f2 + 0.86963142 

X80 = 0.88227252f1 − 0.21631166f2 + 0.17482347 

X90 = 0.51198086f1 + 0.27904327f2 + 0.6603413 

X10 = 0.96383675f1 + 0.1889675f2 + 0.03520754 

X11 = 0.98565196f1 + 0.06091338f2 + 0.02473054 

X12 = 0.9419085f1 + 0.07658956f2 + 0.1070938 

X13 = 0.91119646f1 − 0.34144132f2 + 0.05313571 

X14 = 0.93435233f1 + 0.29142504f2 + 0.04193414 

X15 = 0.98963798f1 + 0.13696161f2 + 0.00189423 

X16 = 0.97793352f1 + 0.18735713f2 + 0.00849015 

X17 = 0.96868006f1 − 0.14847978f2 + 0.03961606 

X18 = 0.83088756f1 − 0.14221722f2 + 0.28942364 

X19 = 0.40645385f1 + 0.2286361f2 + 0.7828528 

X20 = 0.97766424f1 − 0.14560721f2 + 0.02298138 

X21 = 0.98141916f1 − 0.15092655f2 + 0.01403791 

X22 = 0.83088756f1 + 0.71916276f2 + 0.07644893 

 

 From the factor analysis model, f1 is named as economic factor because of its high load on multiple 

variables of economic development indicators. f2 has a high load on the level of public facilities and general 

public financial expenditure, thus it is named as infrastructure factor. 

Furthermore, we obtained the score function of factors and calculated the score for each factor. The 

comprehensive score and the ranking of cities are shown in Table 2. 

 

Table 2. Comprehensive score and ranking 

 f1 f2 Score City 

1 3.57297 4.16697 3.63066 Chengdu 

0 4.03169 -3.67407 3.28326 Chongqing 

25 0.837016 -0.303642 0.726229 Kunming 

(Continued on next page) 
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 f1 f2 Score City 

19 0.445344 0.423721 0.443244 Guiyang 

6 -0.0283619 0.326737 0.00612715 Mianyang 

21 -0.0163058 -0.311717 -0.0449976 Zunyi 

5    -0.171641 0.21961 -0.13364 Deyang 

13   -0.173891 -0.348925 -0.190891 Yibin 

4      -0.2023 -0.30557 -0.21233 Luzhou 

11   -0.208872 -0.362142 -0.223758 Nanchong 

10   -0.259974 -0.0716109 -0.241679 Leshan 

26  -0.224109 -0.409889 -0.242153 Qujing 

2 -0.321599 0.255137 -0.265583 Zigong 

15   -0.298853 0.0344467 -0.266465 Ya’an 

27 -0.284108 -0.131855 -0.26932 Yuxi 

12   -0.310757 0.0551049 -0.275222 Meishan 

9 -0.344354 0.161885 -0.295186 Neijiang 

23   -0.289756 -0.349647 -0.295573 Bijie 

20 -0.335131 0.041507 -0.29855 Liupanshui 

8    -0.331803 -0.00463521 -0.300026 Suining 

3 -0.366606 0.214795 -0.310137 Panzhihua 

24   -0.349972 0.000958733 -0.315887 Tongren 

22 -0.363265 0.0963613 -0.318624 Anshun 

14   -0.355813 -0.0114632 -0.322368 Guang’an 

16 -0.366945 0.0153659 -0.329813 Dazhou 

7    -0.381841 0.116953 -0.333396 Guangyuan 

18 -0.405158 0.163164 -0.349959 Ziyang 

29   -0.367155 -0.226113 -0.353456 Zhaotong 

17 -0.408007 0.071547 -0.36143 Bazhong 

28   -0.411991 -0.00839964 -0.372792 Baoshan 

31 -0.419961 0.0332214 -0.375946 Pu’er 

32   -0.435534 0.0105441 -0.392209 Lincang 

30 -0.452976 0.111649 -0.398137 Lijiang 

 

In terms of comprehensive scores, Chongqing, Chengdu, Kunming, Guiyang all scored more than 0, 

which means they belong to the top-tier. Chongqing has the highest score in terms of economic factor, 

which means that the economic development of Chongqing ranks first in southwest China, while Chengdu 

ranks second.  

Except Mianyang, the comprehensive scores of the remaining 28 cities are all less than 0. Among them, 

Baoshan, Lincang, Pu’er and Lijiang are the minority communities in Yunnan Province, and they belong 

to the lowest tier of cities.  

The remaining cities belong to the second-tier, in which most of the cities are located in Sichuan 

Province.  

 

4. Conclusion 

Factor analysis is an important way of data mining with the main purpose being dimension reduction. It is 

used to measure urban competitiveness in this study, which was performed by using Python. Among 22 
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original variables, two factors were extracted and scores were obtained for each city. The competitiveness 

of Southwest cities was evaluated through the scores obtained. In fact, factor analysis can be used for more 

original variables other than economy, such as education, psychology, and many more.  
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