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1. Introduction
Variational inequalities, first introduced by Stampacchia, have their theoretical origins in an in-depth study 
and generalization of classical variational problems [1]. It provides a direct, simple, and unified framework 
for addressing a wide range of complex problems. Since the mid-20th century, the applications of variational 
inequalities have become powerful mathematical tools for solving equilibrium problems. They have been 
referenced in fields such as economics, contact and friction problems, engineering, control and physics problems, 
transportation, optimization, and both pure and applied sciences [2–5].

In the early days of variational inequalities, most of the work on their existence and iterative methods was 
initially concentrated in the classical convex framework.  However, continuity cannot be guaranteed, which 
makes it difficult to guarantee the existence and uniqueness of the solution to nonconvex variational inequalities. 
Bounkhel and Noor proposed some new variational inequalities, especially for the uniformly r-prox-regular 
set, which is a nonconvex set, but it can be regarded as a convex set in special circumstances [6–8]. Dupuis and 
Nagurney introduced and studied the projection dynamics system related to variational inequalities through 
an equivalent fixed point formula, providing a new approach to solving nonconvex problems [9]. It is worth 
mentioning that Bernstein was the first to study exponential convex functions [10]. Noor et al. further extended the 
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classification of variational inequalities, integrating traditional variational inequalities and nonconvex variational 
inequalities [11–13].

Inspired by the previous works, this paper introduces and investigates a new exponentially regularized 
nonconvex variational inequality. Using projection techniques, we prove the equivalence between the 
exponentially regularized nonconvex variational inequality and fixed point problems. Based on this equivalence, 
the paper further explores the existence and uniqueness of solutions to the exponentially regularized nonconvex 
variational inequality. This study combines self-adaptive methods to propose a self-adaptive projection iteration 
and provide the iteration step size. The aim is to enhance the accuracy and stability of the projection direction, 
especially in complex applications.  Finally, the convergence of the proposed iterative algorithm is thoroughly 
analyzed under suitable conditions. The results of this paper not only extend existing research but also offer 
significant improvements.

2. Preliminaries and basic results
Throughout this article, let H denote a real Hilbert space that is equipped with an inner product <●,●> and 
corresponding norm ||●||. Also let K be a closed subset of H. Recall the following definitions and results of 
nonlinear convex analysis and non-smooth analysis [3, 10, 14–16].

Definition 1. Let x∈H be a point that is not lying in K. The distance from x to u∈K is called the closest 
distance or a projection of x onto K, it is expressed in the following formula

( ) : infK u K
d x x u

∈
= − .

The set of all the closest points is denoted by

( ) : { : ( )}K KP x x H x u d x= ∈ − = .

Definition 2. The proximal normal cone of K is denoted by

( ) : { | ( ), 0}P
K KN u H u P uξ αξ α= ∈ ∈ + > .

Lemma 1. Let K be a nonempty closed subset in H Then ( )P
KN uξ ∈ if and only if there exists a constant 

( , ) 0uα α ξ= >  such that the following proximal normal inequality holds with all v∈K,

2,v u v uξ α− ≤ − .

Definition 3. For any r ∈ [0,+ ∞ ], the subset Kr ∈ H is called uniformly r-prox-regular. If every nonzero 

proximal normal to Kr can be implemented by an r-ball. This means that for all , rx x K∈  and 0 ( )P
KN xξ≠ ∈

21,
2

x x x x
r

ζ − ≤ −
.

Lemma 2. A closed set K H is convex if and only if it is uniformly r-prox-regular set of radius r for every 
r>0.

Lemma 3. Let r>0 and Kr be a nonempty closed and uniformly r-prox-regular subset H. Set 
( ) { : 0 }

rKU r u H d r= ∈ < < . Then the following statements hold:
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(1) For all x∈U(r), PKr(x)≠ ∅ ;

(2) For all r'∈(0,r), PKr is Lipschitz continuous with constant P
rL

r r
=

′−
 on ( ) { : 0 }

rKU r u H d r′ ′= ∈ < < .

3. Projection methods and convergence analysis
In this section, with a given nonlinear operator T,g:H→H such that Kr ( )rK g H⊆g(H), the study will consider the problem 
of finding u∈H such that g(u)∈Kr and

2( ) 1, ( ) ( ) ( ) ( ) 0,     : ( )
2

T u
re g v g u g v g u v H g v K

r
ρ − + − ≥ ∀ ∈ ∈ .	 (1)

The problem (1) is called the exponentially regularized nonconvex variational inequalities (ERNVID). The 
study gives the equivalence among ERNVID (1), problem (2), and the fixed point problem (3).

In the next proposition, the equivalence between nonconvex variational inclusion and exponentially 
regularized nonconvex variational inequalities (1) is established.

Proposition 1. If Kr is a uniformly r-prox-regular set, then problem (1) is equivalent to that of finding 
g(u)∈Kr such that

( )0 ( ( ))
r

T u P
Ke N g uρ∈ + .	 (2)

The problem (2) is called the exponentially regularized nonconvex variational inclusion associated with the 
ERNVID problem.

Proof Let g(u)∈Kr is the solution of the problem (1). If ρT(u)=0, it is known that vector zero always belongs 
to any normal cone, then

( )0 ( ( ))
r

T u P
Ke N g uρ∈ + .

If ρT(u)≠0, one has

2( ) 1, ( ) ( ) ( ) ( ) .
2

T ue g v g u g v g u
r

ρ− − ≤ −

By Lemma 1,
( )0 ( ( ))

r

T u P
Ke N g uρ∈ + .

Conversely, if g(u)∈Kr is a solution of problem (2), then Definition 3 guarantees that g(u)∈Kr is a solution 
to problem (1).

Lemma 4. Let T be the same as in the problem (1) and let ρ satisfy 
( )

0
1 T u

r
e

ρ
′

< <
+

 for all r'∈(0,r). Then 

u∈H with g(u)∈Kr is a solution of the problem (1) if and only if
( )( ) ( ( ) )

r

T u
Kg u P g u eρ= − ,	 (3)

where PKr is the projection of H onto Kr.

Proof Since
( )

0
1 T u

r
e

ρ
′

< <
+

, we have
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( ) ( )

( )

( )

0 ( ( )) ( ) ( ) ( ( ))

                                   ( ) ( )( ( ))

                                   ( ) ( ( ) ),

r r

r

r

T u P T u P
K K

T u P
K

T u
K

e N g u g u e g u N g u

g u e I N g u

g u P g u e

ρ ρ

ρ

ρ

∈ + ⇔ − = +

⇔ − = +

⇔ = −

where I is the identity operator and the study has used the well-known fact that 
1( )

r r

P
K KP I N −= + .

4. New self-adaption algorithm
In this section, we propose a new adaptive iterative projection algorithm and provide a specific formula for the 
adaptive step size. These algorithms are schemes for finding the unique solution of the exponentially regularized 
nonconvex variational inequalities (ERNVID).
Algorithm
Let u∈Kr be a fixed point and let u0∈Kr be arbitrary. Iterative step: for n≥0, if

( )( ) ( ( ) ) 0n

r

T u
n K ng u P g u eρ− − = ,

then stop; otherwise the next g(un+1) by the following form

1
( )

( ) ( )
,

( ) ( ( ) )n

r

n n n n
T u

n n K n

g u g u y

y g u P g u e

β

ρ
+ = −

 = − −

	 (4)

thereβn is chosen self-adaptively as
2( )

min 2 2( ) ( )

( ) ( ( ) )
max , .

( ) ( ( ) ) ( )

n

r

n n

r

T u
n K n

n T u T u
n K n n

g u P g u e

g u P g u e e g u

ρ
β β

ρ ρ

 − − =  
− − + +  

Theorem 1. It is assumed that

(1) PKr is LP-Lipschitzian with P
rL

r r
=

′−
;

(2) eT is Le-Lipschitzian;
(3) g is G-strongly monotonic and Lipschitzian with Le≤G;
(4) βn has a minimum value βmin;

(5) ensure 
2 1 2 1(1 ,1 )

e P P

G
L L L

ρ − −
∈ − + .

Then the sequence un generated by (4) converges strongly to the solution u* of the problem (1).
Proof From (4), the study has

2*
1

2 ( )* *

2( )2

( ) ( )

( ) ( ) 2 ( ) ( ), ( ) ( ( ) )

   ( ) ( ( ) ) ,

n

r

n

r

n

T u
n n n n K n

T u
n n K n

g u g u

g u g u g u g u g u P g u e

g u P g u e

β ρ

β ρ

+ −

= − − − − −

+ − −
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let *
1 1( ) ( )n ng u g u Ö+ +− = , then

2 2 ( )*
1

2( )2

2 ( ) ( ), ( ) ( ( ) )

                          ( ) ( ( ) ) .

n

r

n

r

T u
n n n n n K n

T u
n n K n

g u g u g u P g u e

g u P g u e

β ρ

β ρ

ÖÖ + − = − − − −

+ − −

	 (5)

Because the PKr is LP-Lipschitzian,
*

*

2
( ) * ( )

2
( )2 ( )

( ( ) ) ( ( ) )

( ) ,

n

r r

n

T u T u
K n K

T u T u
P n

P g u e P g u e

L e e

ρ ρ

ρÖ

− − −

≤ − −

by use 
** * ( )( ) ( ( ) )

r

T u
Kg u P g u eρ= − , we have

* 22( ) ( )* 2 ( )( ( ) ) ( ) ( ) ,n n

r

T u T u T u
K n P nP g u e g u L e eρ ρÖ− − ≤ − −

then the following is obtained

*

* *

* *

2( ) *

2
( )2 ( )

22 ( ) ( )2 2 ( ) ( )

22 ( ) ( )2 2 ( ) ( )

( ( ) ) ( )

( )

( 2 , )

( 2 ).

n

r

n

n n

n n

T u
K n

T u T u
P n

T u T uT u T u
P n n

T u T uT u T u
P n n

P g u e g u

L e e

L e e e e

L e e e e

ρ

ρ

ρ ρ

ρ ρ

Ö

ÖÖ

ÖÖ

− −

≤ − −

≤ + − − −

≤ + − − −

The eT is Le-Lipschitzian, so

*( ) ( ) * ,nT u T u
e ne e L u u− ≤ −

and g is G-strongly monotonic, so
* *( ) ( ) ,n ng u g u G u u− ≥ −

because there has Le≤G, the following is obtained
*( ) ( ) .nT u T u e

n
Le e
G

Ö− ≤

So
2( ) *

2
22 2

2

22
1

( ( ) ) ( )

(1 2 )

.

n

r

T u
K n

e e
P n

P n

P g u e g u

L L L
G G

C L

ρ

ρ ρ Ö

Ö

− −

≤ + −

≤

	 (6)

Then
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( )

( ) *

2 ( ) *

2 ( ) *

, ( ) ( ( ) )

, ( ( ) ) ( )

, ( ( ) ) ( )

( ( ) ) ( ) ,

n

r

n

r

n

r

n

r

T u
n n K n

T u
n n K n

T u
n n K n

T u
n n K n

g u P g u e

P g u e g u

P g u e g u

P g u e g u

ρ

ρ

ρ

ρ

Ö

ÖÖ

ÖÖ

ÖÖ

− −

= − − −

= − − −

≥ − − −

by use (6), the study has
2( )

1, ( ) ( ( ) ) (1 ) .n

r

T u
n n K n P ng u P g u e C LρÖÖ − − ≥ −

According to the definition

2( )

2 2( ) ( )

( ) ( ( ) )
,

( ) ( ( ) ) ( )

n

r

n n

r

T u
n K n

n T u T u
n K n n

g u P g u e

g u P g u e e g u

ρ
β

ρ ρ

− −
=

− − + +

the study can get

2( )2

4( )

2 2( ) ( )

2( )

22
1

( ) ( ( ) )

( ) ( ( ) )

( ) ( ( ) ) ( )

( ) ( ( ) )

(1 ) .

n

r

n

r

n n

r

n

r

T u
n n K n

T u
n K n

n T u T u
n K n n

T u
n n K n

n P n

g u P g u e

g u P g u e

g u P g u e e g u

g u P g u e

C L

β ρ

ρ
β

ρ ρ

β ρ

β Ö

− −

− −
=

− − + +

≤ − −

≤ +

Substituting into (5), the study obtains
2 2 2

1 2 ,n n n nCβÖÖÖ + − ≤ −

here 2
1 1 21 2 P PC L C L C− − = .

Summing up both sides

2 2 2
1 2

0 0
( ) ,

N N

n n n n
n n

CβÖÖÖ +
= =

− ≤ −∑ ∑

2 2 2
1 0 2

0
,

N

n n n
n

CβÖÖÖ +
=

− ≤ −∑

with 2
1 0nÖ + ≥ ,

2 2
2 0

0
,

N

n n
n

Cβ ÖÖ
=

≤∑
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to ensure 2
1 0nÖ + → , the study assumes that there exists βmin,

2( )

min 2 2( ) ( )

( ) ( ( ) )
max , ,

( ) ( ( ) ) ( )

n

r

n n

r

T u
n K n

n T u T u
n K n n

g u P g u e

g u P g u e e g u

ρ
β β

ρ ρ

 − − =  
− − + +  

so
*( ) ( ) 0   ( ).ng u g u n− → →∞

Because g is strongly monotonic,
* 0   ( ),nu u n− → →∞

which ends the proof.
The new adaptive iteration and adaptive step size were given to control the gradient direction, ensure the 

update of the convergence direction of the algorithm.

5. Conclusion
In this paper, the authors have introduced and investigated a new exponentially regularized nonconvex variational 
inequality. By employing projection operator techniques, the study establishes the equivalence between 
exponentially regularized nonconvex variational inequalities and fixed point problems. This study combines the 
adaptive method with the iterative framework and proposes a new adaptive projection iterative algorithm based 
on the given projection method, aiming to improve the efficiency and stability of solving variational inequalities, 
especially in complex problem settings.  Finally, the study provides a detailed convergence analysis of the 
proposed iterative algorithm under suitable conditions. The findings of this study not only expand the existing 
theoretical results but also make significant improvements. Interested readers can further explore the broad 
applications and other properties of exponentially regularized nonconvex variational inequalities in pure and 
applied sciences, presenting an exciting direction for future research.
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