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Abstract: This paper proposes a new exponentially regularized nonconvex variational inequality. The paper shows that the
inequalities are equivalent to fixed point problems through the use of the projection properties. The paper develops a new
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direction, thereby improving the stability and convergence of the algorithm.
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1. Introduction

Variational inequalities, first introduced by Stampacchia, have their theoretical origins in an in-depth study
and generalization of classical variational problems . It provides a direct, simple, and unified framework
for addressing a wide range of complex problems. Since the mid-20th century, the applications of variational
inequalities have become powerful mathematical tools for solving equilibrium problems. They have been
referenced in fields such as economics, contact and friction problems, engineering, control and physics problems,
transportation, optimization, and both pure and applied sciences *'.

In the early days of variational inequalities, most of the work on their existence and iterative methods was
initially concentrated in the classical convex framework. However, continuity cannot be guaranteed, which
makes it difficult to guarantee the existence and uniqueness of the solution to nonconvex variational inequalities.
Bounkhel and Noor proposed some new variational inequalities, especially for the uniformly r-prox-regular
set, which is a nonconvex set, but it can be regarded as a convex set in special circumstances ‘*. Dupuis and
Nagurney introduced and studied the projection dynamics system related to variational inequalities through
an equivalent fixed point formula, providing a new approach to solving nonconvex problems . It is worth
mentioning that Bernstein was the first to study exponential convex functions "”. Noor et al. further extended the
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classification of variational inequalities, integrating traditional variational inequalities and nonconvex variational
inequalities "',

Inspired by the previous works, this paper introduces and investigates a new exponentially regularized
nonconvex variational inequality. Using projection techniques, we prove the equivalence between the
exponentially regularized nonconvex variational inequality and fixed point problems. Based on this equivalence,
the paper further explores the existence and uniqueness of solutions to the exponentially regularized nonconvex
variational inequality. This study combines self-adaptive methods to propose a self-adaptive projection iteration
and provide the iteration step size. The aim is to enhance the accuracy and stability of the projection direction,
especially in complex applications. Finally, the convergence of the proposed iterative algorithm is thoroughly
analyzed under suitable conditions. The results of this paper not only extend existing research but also offer

significant improvements.

2. Preliminaries and basic results

Throughout this article, let A denote a real Hilbert space that is equipped with an inner product <e,e> and

corresponding norm ||®||. Also let K be a closed subset of H. Recall the following definitions and results of

. . - 3,10, 14-16
nonlinear convex analysis and non-smooth analysis | I

Definition 1. Let x € H be a point that is not lying in K. The distance from x to u € K is called the closest
distance or a projection of x onto K, it is expressed in the following formula

d(x)= }lrellt;”x —u|| .

The set of all the closest points is denoted by
P.(x)={xeH: ||x—u|| =d, (x)}.

Definition 2. The proximal normal cone of K is denoted by

Ni(uw)y={eH|ueP.(u+af),a>0}

Lemma 1. Let K be a nonempty closed subset in H Then & € N, 1? (#) if and only if there exists a constant
o = a(&,u) > 0 such that the following proximal normal inequality holds with all v E K,

<§,v—u>£a”v—u”2,

Definition 3. For any » € [0+ oo ], the subset K, € H is called uniformly r-prox-regular. If every nonzero

proximal normal to K, can be implemented by an r-ball. This means that for all X,x € K, and 0% & € N 1}; (;)
— 1 —2 -
(¢x-x)s g e
2r

Lemma 2. A closed set K C H is convex if and only if it is uniformly r-prox-regular set of radius r for every
r>0.

Lemma 3. Let >0 and K, be a nonempty closed and uniformly r-prox-regular subset H. Set

U(r)={ueH:0<d k, <T } . Then the following statements hold:
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(1) Forallx EU(r), Py (x) #QD;

(2) For all '€ (0y), P, is Lipschitz continuous with constant L, = !

onU(ry={ueH:0<d, <r'}.

r—r'

3. Projection methods and convergence analysis

In this section, with a given nonlinear operator 7,g:H—H such that K, Sg(H), the study will consider the problem
of finding u € H such that g(«) € K, and

<peT(”),g(V) _g(u)> +%||g(v) — g(u)”2 20, VveH:g(viek, - 1

The problem (1) is called the exponentially regularized nonconvex variational inequalities (ERNVID). The
study gives the equivalence among ERNVID (1), problem (2), and the fixed point problem (3).

In the next proposition, the equivalence between nonconvex variational inclusion and exponentially
regularized nonconvex variational inequalities (1) is established.

Proposition 1. If K, is a uniformly r-prox-regular set, then problem (1) is equivalent to that of finding
g(u) € K, such that

0 pe™ +N¢ (g(u))- &)

The problem (2) is called the exponentially regularized nonconvex variational inclusion associated with the
ERNVID problem.

Proof Let g(u) € K, is the solution of the problem (1). If p"=0, it is known that vector zero always belongs
to any normal cone, then

0e pe™ + Ny (gw)-

If p"#0, one has
T(u) 1 2
(=pe", () -g) < e) - g

By Lemma 1,
0e pe’™ + Ny (g)-

Conversely, if g(u) € K, is a solution of problem (2), then Definition 3 guarantees that g(u) € K, is a solution
to problem (1).

!

Lemma 4. Let 7 be the same as in the problem (1) and let p satisty 0 < p < W
1+(e ™

for all '€ (0y). Then

u € H with g(u) € K, is a solution of the problem (1) if and only if
0N - 3
g()= P (g(u)- pe’™) ®

where Py is the projection of A onto K..
!

. r
Proof Since () < pP<————, We have
e
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0e pe’™ + N (gw) < gu) - pe™ =gu)+ N¢ (g(u)
 g(u)—pe"™ = (I + Ny )g(u))

< g(u) =P (g(u)—pe"™),
where [ is the identity operator and the study has used the well-known fact that Iy K, = (I+N 1?, )71 .

4. New self-adaption algorithm

In this section, we propose a new adaptive iterative projection algorithm and provide a specific formula for the
adaptive step size. These algorithms are schemes for finding the unique solution of the exponentially regularized
nonconvex variational inequalities (ERNVID).

Algorithm

Let u € K, be a fixed point and let u, € K, be arbitrary. Iterative step: for n>0, if

&)~ P (g(u,) = pe’™)|=0.

then stop; otherwise the next g(u,.,) by the following form

gu,)=gw,)-py, 4)
v, =8u,) =P (g(u,)—pe’ ™)

theref, is chosen self-adaptively as

le,)~ P (gu,)=pe’ ™)
el

|2

Y+ g(u,)

ﬂn = max ﬂmin’

T 2

g(u,)—F (g(u,)—pe

Theorem 1. It is assumed that

(1) Py, is Lp-Lipschitzian with L, =
r—r

(2) €' is L-Lipschitzian;

(3) g is G-strongly monotonic and Lipschitzian with L, <G;

(4) S, has a minimum value £,

min»

5 eg(l—ﬁ_l 1+*/§_1)
(5) ensure P 7 L , L .

e

Then the sequence u, generated by (4) converges strongly to the solution " of the problem (1).
Proof From (4), the study has

2

|2, g
= et~ g -2, (g0e,) - g ). 2(w,)~ P (g(u,)~ pe" )

2
+ﬂn2 2

T(un))

g(u,)— P (g(u,)—pe
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p n+l

let ()~ g")|=[p [ then

2

p n+l -

2

n

+8°

Because the Py, is Lp-Lipschitzian,
P (g(,) - pe’ )= P (gu’)— pe’ ™)

. o 2
F) n—p(eT(””)—eT(” N,

‘2

<L’

by use g(u') = 59 (gw")— peT(”*)) , we have

”PK, (g(u,)—pe' ") - g(u*)”2 <L’

then the following is obtained

B (gu,)= pe™ )= gt

o o * 2
P ) _p(eT(un) T ))H

eT(un) _ eT(u*)

<L)’

<L+ o0

<L +p

w12
eT(un) _ eT(u ) e

-2p| .

The e’ is L -Lipschitzian, so

el ) _ eT(u")

*
u,—u

<L,

2

and g is G-strongly monotonic, so

g(,)- g2 Glu, -’

>

because there has L,<G, the following is obtained

S Ly s
el ) _ T S_ep .

G

So

P (g(u,) - pe" ) =g ©)

b,

2

Lez Le
< (1 + p2 ?— 2PE)LP2

b,

2

<CL,’
Then

T(u,) _ eT(u*)

=-28,(2(,) - "), g(u,) - P (g(u,)— pe"))

g(u,) =P (g(u,)—pe" ™) .

P n _p(eT(un) _eT(”‘))

2 ®
—2p< el T )>)

).
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0 8= P (2u,) - pe’ )

=<ﬁ - (g(un)—pe”““)—g(u*)>
0.1 =( B (g,)=pe™™) - g(w))
b, P (g(u,) = pe'"") g ()
by use (6), the study has

<ﬁ »8,)— P (g(u,) —,oe””"))> >(1-4/C L)

According to the definition

2
>

n 3

2

n

|2

let,) - P (gu,) = pe™ )

/3n = 2
le@,) - B (g,)—pe" ™) +[ o + g(u,)
the study can get
2
B |2, - P (gu,)— pe" )|

|4

) le@,) - (g,)—pe’™)

2 2

2

@)~ B (g, - per [ +|pe" ™ + g(u,)
< B, |ew,) - P ()~ pe"
<Ba+cip I

Substituting into (5), the study obtains

2

p n+l -

here 1—2\/aLP -CL,=C,.

2
s

’ < __/3;(j 2

n n

Summing up both sides

2 (

2

p n+l -

2

<> B.C,

n=0

N
-2 A,
n=0

2

n n

2

p n+l

n >

b fp . >o.

2 2
<[

25.C,

n=0

b

2
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to ensure |FJ el ||2 — 0, the study assumes that there exists £,,,,,

g, - P (g(u,)- pe )|

g(,)~ B (g(,) = pe" ) +|pe" ™ +g(,)

ﬁn = max ﬂmin’

2 b

s
le@,)—-g@"| >0 (1> ).
Because g is strongly monotonic,
”“n —u” -0 (n— o),

which ends the proof.
The new adaptive iteration and adaptive step size were given to control the gradient direction, ensure the
update of the convergence direction of the algorithm.

5. Conclusion

In this paper, the authors have introduced and investigated a new exponentially regularized nonconvex variational
inequality. By employing projection operator techniques, the study establishes the equivalence between
exponentially regularized nonconvex variational inequalities and fixed point problems. This study combines the
adaptive method with the iterative framework and proposes a new adaptive projection iterative algorithm based
on the given projection method, aiming to improve the efficiency and stability of solving variational inequalities,
especially in complex problem settings. Finally, the study provides a detailed convergence analysis of the
proposed iterative algorithm under suitable conditions. The findings of this study not only expand the existing
theoretical results but also make significant improvements. Interested readers can further explore the broad
applications and other properties of exponentially regularized nonconvex variational inequalities in pure and
applied sciences, presenting an exciting direction for future research.
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