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Abstract: In this paper, the effective diffusion coefficient of the coupled Brownian ratchet is studied. Langevin equation 
is used to describe the coupled Brownian ratchet model, and the Runge-Kutta algorithm is used to solve the equation. The 
average velocity of the coupled Brownian particle is obtained, and the effective diffusion coefficient of the coupled ratchet 
is further calculated. The numerical calculation method of the effective diffusion coefficient of coupled Brownian particles 
has been widely used in many research fields. By using this numerical strategy, researchers can deeply understand the 
dynamic behavior of complex systems and provide theoretical support for the research and application in related fields.
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1. Introduction
Biomolecular motors, as a kind of important nanoscale molecular machines, are mainly composed of proteins and 
nucleic acids and widely exist in all kinds of cells. This kind of motor obtains chemical energy by hydrolyzing ATP 
or uses electrochemical potential generated by transmembrane proton gradient as a power source [1]. Different from 
macroscopic artificial motors, molecular motors operate in a solution environment with low Reynolds number and 
high viscosity, their motion characteristics are subject to overdamping conditions, and they cannot rely on inertia 
to maintain the motion state [2]. Molecular motors play an indispensable role in the activities of life, from muscle 
contraction and intracellular material transport to DNA replication and cell division, and other processes rely on 
hundreds of molecular motors working together. These nanomachines can actively take up ATP molecules in the 
environment, use the energy generated by their hydrolysis, and achieve directional motion in response to thermal 
fluctuations [3].

To further explore the directional transport mechanism of molecular motors, researchers built a Brownian 
ratchet model based on Brownian motion theory [4]. The essence of this model is to realize directional transport by 
breaking the thermodynamic equilibrium state of the system and destroying the spatial symmetry [5]. According 
to the different ways of non-equilibrium driving, Brownian ratchet models can be divided into four categories: 
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(1) rocking ratchet models, which are characterized by the disturbance of thermal balance by unbiased external 
forces, resulting in directional motion in asymmetric potential fields [6–7]; (2) the scintillation ratchet model, whose 
mechanism results from the random switching or periodic modulation of the asymmetric potential field between 
multiple states [8–9]; (3) the correlated ratchet model, whose directional transport is triggered by time correlation 
effects or spontaneous collective motion [10–11]; (4) self-driven ratchet model, which is characterized by breaking 
the thermal balance through self-driving force and achieving net transport in an asymmetric structure [12–13]. In 
recent years, the research on directional transport of Brown ratchet has made remarkable progress. For example, 
Li et al. revealed the reversal of the direction of motion of collective directional transport in coupled systems and 
found that the reversal of the direction of motion can be achieved by adjusting the coupling strength, free length, 
and potential field asymmetry coefficient [14]. Xu et al. found that the ratchet effect of overdamped Brownian 
particles is suppressed by increasing the noise intensity in a spatially symmetric potential field [15]. In this paper, 
the characteristics of the centroid diffusion coefficient (Deff) of the coupled Brownian ratchet are discussed, and 
its calculation method is deeply analyzed.

2. The theoretical research of coupled Brownian ratchet
In this paper, the diffusion of coupled Brownian particles is studied. The motion of two coupled Brownian particles 
is described by the Langevin equation as follows.
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In the above formula (1) and (2), 𝑥1(t) and 𝑥2(t) respectively represent the position of the two coupled particles 
at the moment), U(𝑥) is the asymmetric periodic external potential, F(𝑥1, 𝑥2) representing the interaction potential 
between the two coupled Brownian particles, the specific form is as follows:

 (3)

1(t) and ξ2(t) are Gaussian white noise and satisfies the following properties

 (4)

 (5)

In the formula (5), D represents the thermal noise intensity, its value is kBT0, kB represents the Boltzmann 
constant, T0 is the ambient temperature.

To study the diffusion behavior of the coupled Brownian motor, the variance of the position of the center of 

mass of the coupled Brownian particle  can be used to calculate the effective diffusion coefficient 
of the system Deff:

 (6)
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In the formula, <…> denotes ensemble average, and  . Therefore, 
the effective diffusion coefficient of the coupled Brownian particle Deff is further expressed in the following form:

 (7)

In this paper, the Langevin equation is solved numerically by Runge-Kutta algorithm, and the effective 
diffusion coefficient of coupled Brownian particles Deff can be further obtained by combining with equation (7).

3. Runge-kutta algorithm of coupled Brownian ratchet
First, the Runge-Kutta algorithm can be applied to calculate the position of the 1 particle and the position of the 2 
particle 𝑥1 and 𝑥2. Among them, the numerical solution procedure for particle 1 is as follows:

 (8)

  (9)

 (10)

2 Particle positions are calculated as follows

 (11)

 (12)

 (13)

Where Y1 and Y2 are Gaussian random numbers with a mean of zero and a variance of 1, h is the step length 
of the numerical calculation.

The position of the center of mass of the coupled Brownian particle can be calculated by the results of 
equations (9) and (12), and the further effective diffusion coefficient Deff can be obtained by equation (8). For the 
convenience of calculation, it can be simplified to the following form:

 (14)

For the diffusion process, the asymptotic time evolution of the variance  is usually a function of increasing 
time, satisfying the following power law.

  (15)

The exponent α in the above formula can reflect the diffusion type of the system. At that time, α = 1 was 
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normal diffusion. At 0 < α <1 time, the system behaved as underdiffusion, and at α > 1 time, it was superdiffusion. 
It is easy to know that in the case of underdiffusion, the position variance increases more slowly with time than 
normal diffusion, while overdiffusion is faster than normal diffusion. Therefore, the time-dependent diffusion 
coefficient Deff can distinguish between these anomalous intermediate diffusion regions, that is, when Deff 
increases with time, it indicates superdiffusion, when Deff decreases with time, it corresponds to subdiffusion, and 
when Deff constant, the system behaves as normal diffusion. It is worth noting that only then is α → 1 the time-
independent diffusion coefficient Deff given by equation (6).

4. Conclusion
In this paper, the diffusion of coupled Brownian particles is studied theoretically by the Langevin equation, the 
motion equation is solved numerically by the Runge-Kutta algorithm, the centroid position of coupled Brownian 
particles is obtained, and the effective diffusion coefficient Deff of coupled ratchets is further obtained. The 
diffusion research of coupled Brownian particles has shown significant theoretical value and practical significance 
in many fields. Through numerical simulation methods, researchers can deeply explore the dynamics of complex 
systems and provide references for theoretical exploration and experimental research in related fields. Especially 
in the field of biophysics, the model is often used to explain the motion mechanisms of various biological 
macromolecules, such as the energy conversion process of molecular motors, the spatial conformation change of 
proteins, and the migration behavior of receptors on the surface of cell membranes. Importantly, by numerically 
solving the effective diffusion coefficients, researchers can more accurately understand the movement of these 
biomolecules in the complex intracellular environment and thereby elucidate the underlying mechanisms of their 
biological functions. In the field of soft condensed matter physics, the model provides a powerful tool for the study 
of the microdynamics of colloidal dispersion systems and polymer solutions. In particular, the quantitative analysis 
of the effective diffusion coefficient plays an important role in exploring the mechanism of the interaction between 
particles affecting the macroscopic properties of the system. For example, the quantitative analysis provides a 
theoretical reference for understanding the rheological properties and phase behavior changes of materials. In 
addition, in the field of environmental science, the model can also be used to describe the migration and diffusion 
process of pollutant particles in complex media, providing a theoretical basis for environmental governance.
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