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Abstract: Molecular motors, as important nanomachines in cells, drive directional motion through ATP hydrolysis and 
play a key role in life processes such as DNA replication and material transport. In this paper, the kinetic evolution of 
coupled Brownian particles is described based on the overdamped Langevin equation, and the mean velocity of the coupled 
particles is obtained. By using the second-order Runge-Kutta algorithm, the dynamic characteristics of the directional 
transport of the coupled ratchet system can be studied theoretically. This research can provide a new approach for the 
design of nanomechanics and the mechanism analysis of biomolecular motion.
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1. Introduction
Brownian motors, also known as Brownian ratchets, are systems that can convert unbalanced drives into 
directional motion of Brownian motors in asymmetrical periodic potentials (ratchets). The system can be modeled 
as a coupled Brownian particle, and exploring the statistical properties of its directional transport is an important 
scientific problem [1–4]. In particular, the statistical parameters of the Brownian motor, such as speed, efficiency, 
diffusion coefficient, and Pe number, have received wide attention [5–8].

Biomolecular motors exist in the interior of cells and are proteases that achieve mutual conversion between 
chemical reactions and directional movements. Their dimensions are several or tens of nanometers, making them 
a kind of natural nanomachines. Molecular motor can catalyze the hydrolysis of ATP and use its released energy, 
because the motor itself is designed very delicate structure, the chemical energy released by the local process can 
further promote the motor to produce a larger size conformational change, as long as the motor and the orbital 
combination, this idea change will make it produce the corresponding relative motion, thus having the “movement.” 
Studies have shown that molecular motors play an important role in all the basic processes of life, such as DNA 
replication, gene transcription, translation, material transport, ATP synthesis, and muscle contraction. As a result, 
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diseases related to molecular motors have been discovered. For example, myosin mutations are associated with 
dilated or hypertrophic cardiomyopathy; Cardiovascular diseases, for example, are associated with overexpression 
of a certain driver gene.

Various models of the Brown ratchet are derived from Feynman’s ratchet and pawl system, which consists 
of a so-called ratchet and a pawl [9]. The ratchet is reminiscent of a circular saw with asymmetrical, serrated teeth, 
and the pawl allows the teeth to move effortlessly in one direction, eliminating rotation in the opposite direction. 
The ratchet and pawl are connected by a shaft with a windmill, the blades of which are surrounded by gas at a 
temperature of T1. The ratchet and pawl are kept at different temperatures of T2 (T2<T1). Random collisions of 
surrounding gas molecules with the blades will cause the ratchet to spin forward. This thermal noise correction can 
be used to perform tasks such as lifting loads.

In earlier studies of the ratchet model, the structure of the motion protein was completely ignored, treating 
it as a point Brownian particle with no internal degrees of freedom. The individual Brownian particles were 
small in speed and efficiency compared to the experimental data. In fact, the motor protein is usually a dimer. 
A conventional motor protein consists of two identical proteins connected by a neck region, each with a motor 
domain (head) and a carrier-binding domain. Recently, some authors have studied the transport of two coupled 
particles theoretically. For example, Klumpp et al. considered the multiplicative potential fluctuation problem in 
the case of strong coupling [10]; Stratopoulos et al. have proposed a simple Newtonian model where two motor head 
particles are connected by a neck coil spring [11]; Dan and Jayannavar consider the inverse correlation coupling 
case [12]. Wang and Bao studied the transport of two coupled particles in a ratchet potential [13].

In this paper, the coupled Brownian particles in a ratchet of arbitrary coupling strength are studied, and the 
transport characteristics of the coupled Brownian (motor) are discussed by a numerical method [14–15]. This study 
will help to understand the rich behavior of molecular motion in cells.

2. Theoretical study of coupled Brownian ratchet
In the microscopic environment inside the cell, the movement of the molecular motor is limited by many factors. 
This paper mainly studies the motion of coupled Brownian motors under asymmetric periodic potential, whose 
dynamic behavior can be described by the dimensionless overdamped Langevin equation:

 (1)

Where the 𝑥i coordinates represent the I-th Brownian particle, Wi represents the potential energy of the I-th 
particle, and its expression is:

 (2)

In the above equation, Ui represents the interaction potential between two elastic coupled particles:

 (3)

k is the coupling strength between particles, a is the coupling free length. Vi is the external force to which the 
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I-th Brownian particle is subjected:

 (4)

Where V0 is the barrier height of the external potential, ∆ is the degree of asymmetry, l is the period of 
the external potential. In the formula (1), ξi(t) is Gaussian white noise, which satisfies the following statistical 
relationship.

 (5)

 (6)

In the formula, i,j=1,2, D0 = γkBT, is thermal noise intensity, and γ is the damping coefficient; kB is the 
Boltzmann constant, and T is the temperature environment.

To further study the directional transport of the Brownian ratchet, this paper uses the mean velocity of the 
centroid of the Brownian ratchet to calculate the speed of the quantized directional transport. The mean velocity of 
the centroid of the I-th Brownian particle is

  (7)

In the formula, τ is the period time, n is the number of periods of system evolution, t0 is the initial moment, 
nτ represents the evolution time of coupled particles, and < > represents the ensemble average.

3. Algorithm implementation of coupled Brownian ratchet
The numerical simulation method of the Langevin equation has been widely used in the study of Brownian 

ratchet transport, and the second-order Runge-Kutta method is mainly used in this study.
First of all, set the initial value y = y(x) ∈ [a, b], according to the differential mean value theorem, there must 

be , so

 (8)

Set yn = y(Xn) and remember K* = F(ξ ,y(ξ)), then

 (9)

In the formula, K* is y(x) the average slope on [xn, xn+1] top. So, by giving the average slope K* an algorithm, 
the equation (9) can be turned into a numerical formula, for example, K* by substituting K1 = f(xn + yn), that is 
Euler’s formula, and then continuing to K2 = f(xn+1 + yn+1) substitute K*, one can get the backward Euler formula, 
and then K1, K2 substitute the average value of K*, one can get the two echelon formula. Suppose that if one can 
predict the slope of [xn, xn+1] more points, and also use their weighted average instead, one can get a numerical 
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solution with higher precision K*, which is the basic idea of the Runge-Kutta algorithm.
Runge-kutta formula in general form:

 (10)

Where Ki is the predicted value of y = y(x), the slope at the   point; , are 
constants chosen to improve the accuracy of formula (10).

According to the general form of the Runge-Kutta algorithm (which is taken from the formula i = 1,2 and i is 
a positive integer), the numerical algorithm for the position of the first particle through the formula (8) and (9) is 
as follows.

 (11)
Where

 (12)

 (13)

The position of the second particle is

 (14)

Among
  (15)

 (16)

Where Y2 is a standard Gaussian random number, that is, the mean is 0 and the variance is 1. Y1 Formulas (11) 
and (14) are the numerical simulation calculations used in this paper. Accordingly, it can be calculated as follows.

  (17)

 (18)

Further, the mean velocity of the center of mass of the coupled particle:

 (19)

Where, x1(t), x2(t) denotes the position of the coupled particle at time t; x01(t), x02(t) represents the position of 
the coupled particle at the initial moment. According to formula (19), the directional transport problem of a multi-
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body coupled system can be studied numerically.

4. Conclusion and prospect
In recent years, Brown motor’s directional transport has attracted extensive attention from scholars, and a lot 
of results have been achieved. Brownian motors are capable of transforming unbalanced drive into directional 
motion, a property that makes them of vital significance in many subject fields, such as biology and physics. 
Molecular motors inside cells, in particular, function as natural nanomachines and are involved in almost all the 
fundamental processes of life, such as DNA replication, gene transcription, and material transport. These molecular 
motors are only a few or tens of nanometers in size, but they can efficiently catalyze the hydrolysis of ATP, use the 
released chemical energy to promote their own conformational changes, and then produce directional motion. In 
this study, the coupled Brownian ratchet model is used to build a theoretical model of the molecular motor, and the 
directional transport speed of the molecular motor is further discussed by the numerical algorithm.

In this paper, the dimensionless overdamped Langevin equation is used to describe the directional motion 
of the coupled Brownian motor under asymmetric periodic potential. At the same time, the mean velocity of the 
center of mass is introduced to describe the speed of directional transport. In the aspect of numerical simulation, 
this paper gives the concrete process of solving the motion equation by the second-order Runge-Kutta algorithm. 
Based on the differential mean value theorem, the algorithm improves the precision of the numerical solution 
by predicting the slope of multiple points and taking the weighted average. Compared with the traditional Euler 
method, the Runge-Kutta algorithm shows higher accuracy and stability when dealing with the Langevin equation 
of coupled particles and can simulate the dynamic behavior of particles in a complex coupled environment more 
accurately, which greatly saves the time cost. However, the Runge-Kutta algorithm has certain requirements for 
the continuity of the solution, and its accuracy may not be as good as that of Euler’s method when dealing with 
problems with poor continuity. Therefore, in the practical application, it is necessary to choose the appropriate 
algorithm according to the characteristics of the specific problem to ensure the accuracy and reliability of the 
simulation results.

The theoretical research method in this paper can be applied to the design of nanomachines and particle 
separation technology. In the following work, the researchers can further optimize the algorithm, develop the self-
adaptive step length Runge-Kutta algorithm, combine machine learning and artificial intelligence technology 
to optimize the parameter selection, and improve the performance and adaptability of the algorithm in complex 
scenarios; In addition, further expand on theoretical issues, expand the connection between Langevin equation of 
coupled particles and theories such as quantum mechanics, study the collective behavior and directional motion of 
multi-particle coupled systems under quantum effects, build a solid theoretical foundation for understanding the 
macro properties of complex systems, and promote the development and innovation in related fields.
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