
200

Education Reform and Development, 2025, Volume 7, Issue 10
https://ojs.bbwpublisher.com/index.php/ERD

Online ISSN: 2652-5372
Print ISSN: 2652-5364

Research on Strategies for Strengthening 
Computer Professional Thinking Training in 
Discrete Mathematics Courses 
Lijuan Yao* 

Taiyuan University, Taiyuan 030032, Shanxi, China

*Author to whom correspondence should be addressed.

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: Discrete mathematics, as a core foundational course in computer science, covers set theory, logical reasoning, 
graph theory, algebraic structures, etc., and is a key carrier for building computer science thinking. At present, there is 
a problem in discrete mathematics teaching in some universities that emphasizes theoretical derivation over thinking 
transformation, which makes it difficult for students to effectively connect the course knowledge with subsequent 
professional courses and engineering practice. This paper analyzes the necessity of strengthening computer professional 
thinking training in discrete mathematics courses, and elaborates on the core value of discrete mathematics in the 
cultivation of computer professional thinking from three dimensions: supporting core course learning, cultivating problem 
modeling ability, and enhancing algorithm design literacy, providing theoretical support for the optimization of teaching 
strategies for subsequent courses.

Keywords: Discrete Mathematics; Computer Science; Thinking training

Online publication: November 12, 2025

1. Introduction
Discrete mathematics is a fundamental core course for computer science and technology. Its content system 
covers key modules such as logical reasoning, set theory, graph theory, and algebraic systems, which directly 
determine the depth of understanding and application ability of students’ computer professional knowledge. 
With the rapid development of fields such as artificial intelligence, big data, and cybersecurity, the computer 
industry’s demand for professional thinking is constantly increasing. It requires not only a solid theoretical 
foundation but also core thinking abilities such as abstract modeling [1], logical analysis, and algorithm design. 
However, in the current teaching of some discrete mathematics courses, there is still a phenomenon of being 
mainly theoretical and disconnected from professional practice, which makes it difficult for students to 
transform discrete mathematics knowledge into professional thinking ability and affects subsequent course 
learning and career development. Therefore, an in-depth analysis of the necessity of strengthening computer 



201 Volume 7, Issue 10

professional thinking training in discrete mathematics courses is of great significance for optimizing course 
teaching and improving the quality of talent cultivation.

2. The necessity of strengthening computer professional thinking training in 
Discrete Mathematics courses
2.1. The foundation of knowledge transfer that supports the study of core computer 
courses
The knowledge system of discrete mathematics serves as the theoretical foundation for many core courses 
in computer science, and the impact of its thinking training directly affects students’ understanding and 
application abilities in subsequent courses. In the data structures course, the concept of set theory provides 
theoretical support for the definition of data structures such as linear lists, trees, and graphs, and the contents 
of path analysis and topological sorting in graph theory are directly applied to the algorithm design of graph 
structures; In the Database Principles course, relational algebra serves as the theoretical foundation of the 
query language for relational databases, and its logical reasoning thinking directly determines students’ 
ability to optimize SQL statements; In artificial intelligence courses, propositional logic and predicate logic 
are the core tools for knowledge representation and reasoning. If students cannot form rigorous logical 
thinking through discrete mathematics training, it will be difficult for them to understand the principles of key 
technologies such as neural networks and expert systems [2]. 

In addition, discrete mathematics thinking methods play a crucial role in courses such as operating 
systems, compiler principles, and network security. Strengthening professional thinking training in discrete 
mathematics courses can help students establish intrinsic connections among knowledge, form a systematic 
knowledge system, provide effective knowledge transfer ability for subsequent core course learning, and avoid 
the learning predicament of “disconnection between theory and application” [3]. For example, when students 
study syntactic analysis in compiler principles, if they have mastered the logical connection between finite 
automata and regular expressions through discrete mathematics training, they can quickly understand the 
construction principle of the parser, achieve efficient transfer and application of knowledge, and improve the 
efficiency and effectiveness of course learning.

2.2. Develop the core ability of abstract modeling of computer problems
One of the core tasks of computer science is to transform practical problems into computable mathematical 
models, and discrete mathematics is precisely the key carrier for cultivating this ability of abstract modeling. 
In engineering practice within the field of computer science, whether it involves software system development, 
algorithm design, or data processing, practical problems must be abstracted into discrete mathematical models 
first. Solutions are then derived through theoretical analysis and calculation. For example, in the problem 
of network routing optimization, nodes and links in the network need to be abstracted as vertices and edges 
in graph theory, the routing selection problem is transformed into the shortest path solution problem, and 
the optimal routing solution is obtained through Dijkstra’s algorithm or Floyd’s algorithm [4]; In logistics 
distribution path planning, elements such as delivery points, distribution routes, and time costs need to be 
abstracted into weighted graph models, and the distribution scheme is optimized through algorithms related 
to the minimum spanning tree in graph theory or the traveling salesman problem. Set theory, graph theory, 
algebraic structures, and other contents in the discrete mathematics course provide students with thinking 



202 Volume 7, Issue 10

methods and tools for abstract problems and model construction. Strengthening professional thinking training 
in the course can guide students to learn to extract key elements from practical problems, ignore irrelevant 
details, construct mathematical models using symbols, concepts, and methods of discrete mathematics, and 
gradually form the thinking path of “problem abstraction - model construction - solution verification” [5]. This 
ability of abstract modeling is not only a core requirement for computer science learning, but also a necessary 
ability for students to engage in software development, system design, and other jobs in the future. Without 
this ability, students will have difficulty dealing with complex engineering practice problems and can only 
remain at the level of simple code writing, unable to achieve the transformation from “technical executor” to 
“problem solver.”

2.3. Enhance literacy in computer algorithm design and optimization
Algorithms are at the core of computer science, and discrete mathematics is the theoretical foundation of 
algorithm design and optimization. Strengthening professional thinking training in discrete mathematics 
courses can effectively enhance students’ algorithmic literacy. Logical reasoning in discrete mathematics 
provides methods for proving the correctness of algorithms. Through training in propositional logic and 
predicate logic, students can learn to verify the correctness of algorithms using methods such as mathematical 
induction and proof by contradiction to avoid system failures caused by logical loopholes in algorithms. The 
concepts in set theory and graph theory provide ideas for algorithm design. For example, data deduplication 
algorithms can be designed based on the intersection and union operations of sets, and path finding and 
topological sorting algorithms can be designed based on the depth-first and breadth-first search of graphs 
[6]. The concepts of groups, rings, and fields in algebraic structures provide theoretical support for the 
design of cryptographic algorithms. For example, the security of the RSA encryption algorithm depends 
on the mathematical properties of the large number factorization problem [7]. In the teaching of discrete 
mathematics, through the derivation and analysis of classical algorithms, students can be guided to understand 
the underlying logic of algorithm design and master the thinking method of “problem transformation - 
mathematical modeling - algorithm implementation - optimization improvement” [8]. For example, when 
explaining the shortest path algorithm, by analyzing the applicable scenarios and time complexity of Dijkstra’s 
algorithm and Bellman-Ford’s algorithm, students can learn to choose the appropriate algorithm based on the 
characteristics of the problem and improve its efficiency through optimization. This cultivation of algorithmic 
literacy can not only enhance students’ performance in course design and graduation projects, but also lay the 
foundation for their future work in high-end fields such as algorithm research and development and artificial 
intelligence, avoiding the shortcoming of “only being able to call existing algorithms but unable to design and 
optimize them.”

3. Strategies for strengthening computer professional thinking in Discrete 
Mathematics courses
3.1. Modularized thinking: Breaking down complex problems to build discrete cognition
In discrete mathematics teaching, with the core idea of “breaking down complex problems into independent 
modules”, students are guided to develop the awareness of “discretization” and “modularization” problem-
solving through specific teaching content. For example, when teaching the chapter on combinatorial counting, 
instead of directly explaining the complex counting problem, break it down into sub-problems such as 



203 Volume 7, Issue 10

permutation and combination calculation, recurrence relation analysis, and application of the principle 
of tolerance and exclusion, allowing students to gradually master the method of problem decomposition 
from the whole to the part [9]. At the same time, in combination with computer programming scenarios 
to enhance module cognition, after explaining theoretical knowledge, introduce module decomposition 
cases in programming design, such as breaking down core algorithms into independent modules like input 
data processing, logical judgment operations, and output result generation, to help students understand 
the correspondence between the “subproblems” in discrete mathematics and the “functional modules” in 
programming [10]. Through this “theoretical dissection + practical mapping” teaching approach, students 
overcome the fear of complex problems, learn to analyze discrete mathematics problems and computer 
application problems with modular thinking, form a “disassembly - solution - integration” problem-solving 
path, and lay the foundation for subsequent handling of professional problems such as complex algorithm 
design and system development.

3.2. Hierarchical and systematic thinking training: Build a logical hierarchy based on 
modular teaching
Design hierarchical teaching paths around core teaching modules such as mathematical logic and graph theory 
to guide students to sort out problems in logical hierarchy and cultivate systematic thinking. In the teaching 
of the mathematical logic chapter, start with the basic concepts of propositional logic, gradually transition to 
quantitative analysis of predicate logic, and then extend to the rule application of logical reasoning, allowing 
students to perceive the logical hierarchy of “basic concepts - advanced analysis - comprehensive application” 
during the learning process; In graph theory teaching, first explain the basic definition and representation 
of graphs, then delve into algorithmic analysis such as graph traversal and path finding, and finally, in 
combination with practical scenarios such as network topology design, guide students to handle problems 
in the hierarchy of “structure definition - algorithm design - scenario application” [11]. At the same time, this 
hierarchical thinking is combined with computer science practice. For example, when explaining cases related 
to program design, students are guided to divide the program development process into different levels such 
as requirements analysis, module design, code implementation, test optimization, etc. Each level corresponds 
to different knowledge modules in discrete mathematics. For example, in the requirements analysis stage, 
functional logic is sorted out based on mathematical logic. In the module design stage, graph theory is used 
to optimize the interrelationships between modules. Through this teaching approach, students can gradually 
develop the habit of handling problems logically and improve their ability to systematically analyze and solve 
professional problems [12].

3.3. Axiomatic thinking enhancement: Deepening the ability of abstract derivation based 
on Algebraic systems
In the teaching of more abstract chapters such as algebraic systems, with the goal of “strengthening axiomatic 
thinking”, focus on explaining the basic operation rules and the axiomatic derivation process to help students 
master the method of deriving complex problems from abstract modules. The teaching process is no longer 
limited to formula memorization and operation training, but starts from the axiom definitions of the algebraic 
system, such as the basic operation rules of groups, rings, and fields, and elaborately deduces the theorem 
proving process under the axiom system, allowing students to understand the logical derivation chain of 
“axioms - theorems - inferences”. For example, in the teaching of group theory, starting from the four axioms 



204 Volume 7, Issue 10

of group closure, associative law, identity element, and inverse element, the relevant properties such as the 
order and subgroup of the group are derived, guiding students to think about how to abstract the core features 
of the algebraic structure through axiom definitions [13]. At the same time, in combination with abstract 
problems in computer science, such as the equivalent transformation of logical formulas and the application 
of solving algebraic equations, let students try to use axiomatic thinking to derive solutions to problems 
and understand the intrinsic connection between abstract axioms in discrete mathematics and professional 
problems [14]. Through this teaching model, students can gradually break away from their reliance on specific 
examples, learn to analyze complex problems from abstract axioms, enhance their abstract thinking and logical 
reasoning abilities, and lay the foundation for subsequent study of specialized courses such as cryptography 
and artificial intelligence that rely on abstract reasoning.

3.4. Synergistic optimization of practice cases and curriculum integration: Lowering the 
learning threshold and strengthening application cognition
Through the collaborative design of “practical case integration” and “course connection optimization”, discrete 
mathematics teaching is more in line with the learning path of computer science, and students’ application 
cognition is strengthened. In terms of adjusting the sequence of course content, the traditional teaching 
model of “theory first, then application” is broken. Modules closely related to the computer major, such as 
mathematical logic and set theory, are introduced first, and then gradually transition to abstract theoretical 
modules such as algebraic systems and combinatorial mathematics. For example, propositional reasoning in 
mathematical logic is explained first, and conditional judgment statements in programming are combined to 
help students understand logical relationships. Then delve into the quantitative analysis of predicate logic 
to lower the threshold for learning abstract theories [15]. At the same time, incorporate computer application 
scenario cases into the teaching of each module, such as introducing state transition analysis cases when 
teaching algorithm design-related content, and explaining state transition logic in programs in combination 
with knowledge of finite automata; In graph theory teaching, use network topology optimization as a case 
to have students design optimization schemes using knowledge of graph path finding, minimum spanning 
tree, etc. Through the teaching method of “learning relevant modules first + integrating practical cases”, 
students can intuitively perceive the specific applications of discrete mathematics in professional fields such 
as programming, algorithm design, network optimization, etc., alleviate the resistance to abstract theories, 
and at the same time achieve a smooth connection between discrete mathematics and subsequent professional 
courses, and enhance the coherence and effectiveness of knowledge application [10].

4. Conclusion
Discrete mathematics, as the core vehicle for cultivating thinking in computer science, is directly related to the 
formation of the core competence of talents in terms of its teaching quality. This paper clarifies the necessity of 
strengthening professional thinking training from four aspects: supporting core courses, cultivating modeling 
ability, enhancing algorithmic literacy, and adapting to industry demands, and then proposes four strategies: 
modular dissection, hierarchical teaching, axiomatic derivation, and coordinated connection between practice 
and courses. These strategies are both in line with the disciplinary characteristics of discrete mathematics 
and closely meet the practical needs of computer science, and can provide path references for solving the 
teaching predicament of discrete mathematics, which is “difficult to learn theoretically and disconnected 



205 Volume 7, Issue 10

from application.” In the future, we can further explore the implementation methods and effect evaluation 
mechanisms of the strategies in combination with specific teaching scenarios, continuously optimize the 
teaching mode, contribute to the improvement of the quality of talent cultivation in the computer major, and 
provide high-quality talents with solid thinking ability for the development of the industry.

Funding 
2025 Shanxi Province Higher Education Teaching Reform and Innovation Project, “Reform and Practice 
of Discrete Mathematics Curriculum for Application-Oriented Undergraduate Computer Major under the 
Background of ‘101 Plan’” (Project No.: J20250295)

Disclosure statement
The author declares no conflict of interest.

References
[1]	 He A, Pan L, Li T, 2025, Research on Teaching Innovation Reform of Discrete Mathematics Oriented by 

Computational Cognitive Thinking. Educational Teaching Forum, 2025(20): 67–71.
[2]	 Zhang S, Gao G, Guo X, 2024, Research on Inquiry-Based Teaching Mode Based on Computational Thinking 

Cultivation. Journal of Henan Institute of Science and Technology, 44(4): 8–16.
[3]	 Zhao J, Fan L, Zhang T, et al., 2024, Research on Teaching Mode of Discrete Mathematics Based on Computational 

Thinking. Neijiang Science and Technology, 45(3): 52–53 + 56.
[4]	 Lu S, Liu Q, 2023, Journal of Guangxi Radio and Television University. Journal of Guangxi Radio and Television 

University, 34(4): 83–87.
[5]	 Dong L, Yang M, Wen Z, 2023, Practice and Analysis of Teaching Reform in Discrete Mathematics. Modern 

Vocational Education, 2023(19): 129–132.
[6]	 Chen W, Zhou X, 2023, A Teaching Exploration of the Integration of Programming and Discrete Mathematics. 

Computer Education, 2023(3): 76–80.
[7]	 He C, Liu D, 2023, Computational Thinking and Course-Based Ideological and Political Education in Discrete 

Mathematics Curriculum. Computer Education, 2023(2): 79–82.
[8]	 Zhou X, Qiao H, Li L, 2022, Cultivation of Computational Thinking in Combinatorial Counting Teaching in 

Discrete Mathematics Curriculum. Computer Education, 2022(5): 1–5.
[9]	 Zhang R, Zhang F, Yang G, 2021, Research on Stratified Teaching of Discrete Mathematics Based on Computational 

Thinking Ability Cultivation. Zhengzhou Normal Education, 10(6): 70–72.
[10]	 Jia J, Li W, 2021, Teaching Reform of Discrete Mathematics Based on Computational Thinking for Ability 

Development. Computer Education, 2021(9): 152–155.
[11]	 Wu Z, 2021, Research on the Necessity of Embedding Applied Thinking into Discrete Mathematics Teaching. 

Science & Technology Vision, 2021(16): 29–30.
[12]	 Liu F, 2021, Cultivating Computational Thinking in Propositional Logic of Discrete Mathematics Curriculum. 

Computer Education, 2021(4): 151–154.
[13]	 Hou Y, 2020, Analysis of Discrete Mathematics Teaching in the Era of Big Data. New Curriculum Teaching 



206 Volume 7, Issue 10

(Electronic Edition), 2020(22): 116–117.
[14]	 Zhang Y, Bao Y, 2020, Research on Computational Thinking Oriented Discrete Mathematics Teaching Mode. 

Science & Technology Wind, 2020(21): 38–39.
[15]	 Jin Y, Hu Y, Tian Q, et al., 2020, A Case Study of Discrete Mathematics Teaching: Taking Equivalence Relations as 

an Example. Educational Teaching Forum, 2020(29): 264–266.

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations. 


