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Abstract: The deep integration of digital transformation and artificial intelligence (AI) is driving profound changes in 
mathematics education. International forums like the 15th International Congress on Mathematical Education (ICME-
15) have emphasized “reconstructing teaching paradigms through AI” as a central theme. However, current research often
remains limited to a tool-oriented approach involving specific technologies, creating a disconnect between learning and
teaching processes. This gap hinders a fundamental solution to the core challenge of balancing standardized education
with personalized cultivation. To address this, this study proposes the “AI Dual-Loop Empowerment” model. This data-
driven framework establishes a dynamic closed-loop system. Within the “student self-learning loop,” activities such
as “preview” and “instant diagnosis” generate “learning data.” These data, in turn, drive the “teacher teaching loop,”
where educators perform “learning analytics” and “implement interventions.” The outcomes of these interventions feed
back into the students’ subsequent learning, creating a virtuous cycle in which “learning informs teaching and teaching
promotes learning” and enabling continuous “data-driven decision.”
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1. Introduction
The digital transformation of education is advancing globally, with breakthroughs in technologies such as 
generative artificial intelligence (AI) driving profound changes in the educational ecosystem [1,2]. This trend 
is particularly pronounced in mathematics education. China’s 2022 Compulsory Education Mathematics 
Curriculum Standards explicitly emphasize the integration of information technology into mathematics teaching, 
with a core objective being the use of data to achieve “precision teaching” and “personalized learning” [3]. This 
vision aligns with international priorities. For instance, the 2024 15th International Congress on Mathematical 
Education (ICME-15) elevated its focus from “how to use technology” to “how to reconstruct teaching 
paradigms through AI” [4]. Similarly, the National Council of Teachers of Mathematics (NCTM) underscores that 
mathematics teachers serve as the bridge connecting students and AI [5].
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Despite the promising potential of AI in education, current research and practice face significant limitations:
(1) Tool-oriented tendency and lack of model construction

Existing research often focuses on validating specific AI functions, such as adaptive item banks or 
automated grading. While studies have confirmed the effectiveness of individual AI tools [6], they fail to 
elucidate how these tools systematically reshape the teaching structure. Although valuable, these “single-
point breakthroughs” lack integration across the entire teaching process—including lesson preparation, 
instruction, assignments, assessment, and management—and have not yet coalesced into a unified, 
theoretically coherent instructional model.

(2) Predominance of unidirectional focus and neglect of dual-loop interaction mechanisms
Some studies primarily explore how AI assists teachers’ “teaching” [7], paying less attention to students’ 
“learning,” and rarely analyzing the data-driven, bidirectional closed-loop interaction mechanism 
between the two. How does the “student self-learning loop” precisely drive the “teacher teaching loop”? 
How do teachers’ interventions, in turn, optimize the “student self-learning loop”? This data-driven, 
bidirectional, closed-loop empowerment ecosystem represents a critical blind spot in current research.

(3) Ambiguity in human-AI collaboration and unclear role definition
Although “human-AI collaboration” is a recognized concept [8], discussions on its specific mechanisms 
and division of responsibilities remain largely conceptual, lacking actionable implementation 
frameworks. Should AI replace teachers’ repetitive tasks or act as an “amplifier” of their pedagogical 
expertise? How should responsibilities be delineated in classrooms where “AI teachers” and human 
teachers coexist? How can teachers critically evaluate AI-generated content while infusing it with 
indispensable emotional support and creative instructional design? These pivotal questions urgently 
require clarification through the development of a clear model.

To address this gap, this study proposes an innovative “AI Dual-Loop Empowerment” theoretical model. 
The study first outlines the six theoretical foundations underpinning the model, then elaborates on its core 
components and operational mechanisms. Finally, it demonstrates the model’s theoretical coherence and practical 
value through a derivation based on a hypothetical junior secondary mathematics teaching scenario.

2. Theoretical foundation
The construction of the “AI Dual-Loop Empowerment” model is well-grounded, drawing deeply from a series of 
classical and contemporary learning science theories. Collectively, these theories provide a solid foundation for 
the model’s rationality, innovation, and feasibility.

2.1. Cornerstone classical theories
(1) Mastery learning theory

Systematically proposed by the renowned educational psychologist Benjamin Bloom, this theory posits 
that the vast majority of students can achieve mastery of knowledge and skills, provided they are given 
sufficient learning time, appropriate instructional conditions, and frequent formative assessment with 
feedback. The theory emphasizes ensuring students fully grasp fundamental concepts before progressing 
to subsequent learning. Within the present model, mastery learning theory forms the underlying logic and 
core objective of realizing the ideal of “large-scale individualized instruction.” The “instant diagnosis” 
within the “student self-learning loop” continuously identifies students’ knowledge weaknesses where 
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mastery has not been achieved. The “teacher teaching loop” then leverages this information to conduct 
“precise instructional design” and “management intervention,” ensuring collective progress for most 
students. The work of Nye et al., which integrated the AutoTutor and ALEKS systems, demonstrates 
the effectiveness of continuous diagnosis and personalized support via adaptive technology, providing a 
practical reference for the “dual-loop” operation of this model [9].

(2) Constructivist learning theory
This theory contends that knowledge is not passively received from teachers but is actively constructed 
by learners through interaction with their environment, with support from others (including teachers 
and peers) and necessary learning resources. In this model, constructivism provides the fundamental 
rationale for how the “dual loops” foster deep learning. The “student self-learning loop” utilizes digital 
tools like interactive micro-videos and dynamic geometry to create low-threshold, highly interactive 
virtual exploration environments, effectively stimulating students’ active meaning-making as cognitive 
agents [10]. Conversely, the “teacher teaching loop,” by organizing group discussions and collaborative 
problem-solving based on “learning analytics,” places individual preliminary understandings within a 
learning community for negotiation and refinement, embodying the crucial role of social interaction in 
knowledge construction [11].

(3) Distributed cognition theory
This theory posits that cognition is not confined solely to an individual’s mind but is distributed across 
individuals, tools, symbol systems, and the environment that constitute a functional system. In this model 
it provides the core framework for understanding the essence of “human-AI collaboration.” It reveals 
that the “student self-learning loop” and the “teacher teaching loop” are not merely functional additions 
but constitute a dynamic, distributed cognitive system. Research by Guo et al. emphasizes the critical 
importance of maintaining “human agency” as central in collaborations with AI, noting that a loss of 
student ownership can diminish their agency [12]. Haraldsrud et al. highlight the importance of students 
effectively coordinating generative AI as a cognitive partner, distinguishing between “productive” and 
“unproductive” interaction patterns [13]. This finding serves as both a caution and a guide for designing 
the “self-learning loop” in this model. Ferrario et al., arguing from a philosophical epistemological 
standpoint, demonstrate that when humans successfully “appropriate” AI to form a “hybrid cognitive 
agent,” they can exhibit cognitive capabilities surpassing those of the individual parts, thereby attaining 
genuine epistemic authority and subsequently achieving an overall leap in teaching efficacy [14]. Together, 
these studies—from sustaining human agency and optimizing interaction patterns to arguing for the 
legitimacy of hybrid agents—provide theoretical grounding for the “human-AI collaboration” design in 
this model, spanning micro to macro levels.

2.2. Contemporary theoretical perspectives
(1) Precision education theory

Precision education is a data-driven paradigm that leverages advanced information technologies, such 
as artificial intelligence and learning analytics, to comprehensively collect and analyze learning process 
data, thereby achieving personalized education [15]. The present model represents a concrete instantiation 
of the precision education paradigm within the classroom teaching context. The success of the “precision 
education timely intervention system” developed by Lee et al. in K-12 STEM fields provides cross-
disciplinary support for the model’s core assumptions [16]. Furthermore, the hybrid deep learning 
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framework constructed by Altaf et al. methodologically illustrates the required technical depth and data 
breadth for realizing precision education [17]. Precision education theory offers comprehensive support 
for the “AI Dual-Loop Empowerment” model, from conception to practice. Specifically, the “self-learning 
loop” enables the data-driven diagnosis essential to precision education, while the “teaching loop” 
facilitates the personalized, timely interventions that precision education pursues.

(2) Learning analytics and the closed-loop paradigm
This field aims to understand and optimize learning environments by analyzing learner data. When 
this process forms a dynamic cycle of “data-analysis-intervention-feedback,” it constitutes the core 
mechanism for scalable personalized cultivation—the “closed-loop paradigm.” Within the present 
model, learning analytics and the closed-loop paradigm function as its “nervous system” and “circulatory 
system,” respectively. Hahn’s research validates the feasibility of closed-loop learning analytics models 
and identifies “teacher type” and “intervention timing” as key variables [18]. AlZoubi further reveals that 
teachers’ “sensemaking processes” regarding data dashboards act as the bridge from data to intervention 
within the closed loop [19]. The temporal machine learning approach developed by Nur provides an 
advanced data analysis tool for enabling proactive and intelligent closed loops [20]. Collectively, these 
studies demonstrate that the “dual-loop” system constructed in this model constitutes a complete and 
evolvable teaching closed-loop ecosystem. It aligns with the principles of learning science, possesses a 
solid technical foundation, and fully acknowledges the central role of the teacher.

(3) Data-driven decision-making and human-AI collaboration
Data-driven decision-making refers to the paradigm of formulating teaching strategies, implementing 
educational interventions, and optimizing teaching processes through the collection and analysis of data. 
Its integration with AI has given rise to a new educational ecology of “human-AI collaboration.” Ji’s 
research found that in AI-integrated teaching, the teacher’s role is transformed rather than replaced, with 
their pedagogical authority and agency being central to effective integration [21]. The mixed-methods 
study by Hussain et al. confirms that the integration of AI is redefining the roles of teachers and students 
and reshaping learning experiences, emphasizing that AI should serve as a “tool” to enhance educational 
experiences [22]. This provides a theoretical anchor for the role division and collaborative relationship 
between teachers and AI within the present model.

In summary, these six theories form a clear, hierarchical, and mutually supportive framework, establishing 
a solid theoretical foundation for the “AI Dual-Loop Empowerment” model. This framework indicates that 
mastery learning theory defines the model’s foundational goal. Constructivist and distributed cognition theories 
explain the internal mechanics of the “dual loops” from the perspectives of individual knowledge construction 
and human-AI system synergy, respectively. Building upon this, the precision education paradigm establishes 
the core philosophy of data-driven instruction. Learning analytics and the closed-loop paradigm provide the 
methodological support for realizing the closed flow of data and intervention feedback. Finally, data-driven 
decision-making and human-AI collaboration fundamentally delineate the functional boundaries and interactive 
relationships between teachers and AI within the collaborative teaching process.

3. Construction of the AI dual-loop empowerment model
3.1. Model framework and core components
The “AI Dual-Loop Empowerment” model is a data-driven, closed-loop instructional system that integrates the 



252 Volume 7, Issue 10

“student self-learning loop” and the “teacher teaching loop” (Figure 1). Its core components are as follows:

Figure 1. The AI dual-loop empowerment model.

(1) The “student self-learning loop”
This loop operates primarily during the ”preview” and ”practice” stages. Students use an AI platform 
for content preview and consolidation exercises. The platform, leveraging its built-in AI engine (e.g., 
machine learning models, knowledge graphs), collects and analyzes learning behavior data (e.g., video 
viewing duration, pause points, answer accuracy, response time) in real time. This enables ”instant 
diagnosis” and subsequently ”optimizes learning path,” providing students with personalized learning 
support.

(2) The “teacher teaching loop”
This loop spans the entire teaching process, including lesson preparation, in-class instruction, and after-
class tutoring. Teachers access the ”learning analytics” report generated by the “student self-learning 
loop” via the platform. Based on this analysis, they conduct ”precise instructional design” (e.g., adjusting 
teaching priorities, designing tiered tasks) and ”management intervention” (e.g., individual tutoring, 
resource pushing). After teachers ”implement intervention,” the effects are fed back into the system as 
new data.

(3) Data flow and AI engine drive
Data serves as the core link connecting the two loops, while the ”AI engine & data flow” acts as the 
intelligent center of the system. The learning data generated by the “student self-learning loop” is 
analyzed by the AI engine, which then drives teaching decisions and intervention actions within the 
“teacher teaching loop.” Data on the effects of teacher interventions (e.g., classroom performance, 
assignment quality) is fed back to the “student self-learning loop,” influencing subsequent diagnosis and 
path optimization. This process forms a continuously iterative, self-optimizing closed-loop instructional 
ecosystem, achieving genuine ”data-driven decision.”

3.2. Operational mechanism characteristics
(1) Data-driven: The model operates entirely on objective, continuous learning data, shifting teaching 

decisions from being experience-driven to evidence-driven.
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(2) Dual-loop linkage: ”Learning” and “teaching” are tightly coupled through real-time data flow, forming 
an organic whole that mutually drives each other. This implements the scalable teaching mechanism of 
“letting learning determine teaching and letting teaching promote learning” in practice.

(3) Human-AI collaboration: The model clarifies the division of roles between AI and teachers. AI acts as 
a “super teaching assistant,” handling repetitive, computational tasks and providing data insights. The 
teacher serves as the “learning commander,” responsible for emotional guidance, cognitive stimulation, 
creative instructional design, and the final review of AI output, ensuring the dominance of human 
cognition within the system.

This framework is universal; its core mechanisms, “data-driven,” “dual-loop linkage,” “human-AI 
collaboration,” can be adapted to different subject contents and teaching scenarios.

4. Teaching derivation: The case of “Completing the square for quadratic 
equations”

To concretize the operational mechanism of the model, this study conducts a hypothetical teaching 
derivation using the junior secondary mathematics topic “completing the square for quadratic equations” as an 
example.

(1) “Student self-learning loop” (Pre-class)
Students watch an instructional micro-video on completing the square and complete fundamental 
exercises on the AI platform. Through ”instant diagnosis”, the platform identifies that approximately 
60% of students make errors in the specific step of “handling quadratic equations where the leading 
coefficient is not 1,” while also flagging individual students struggling with the conceptual understanding 
of “perfect square trinomials.” Consequently, the system ”optimizes learning path” by pushing targeted 
review materials to the relevant students.

(2) Data Flow and the “Teacher Teaching Loop” (Lesson Preparation)
The teacher reviews the ”learning analytics” report and decides to focus the upcoming classroom 
instruction on the technique for “completing the square when the leading coefficient is not 1,” designing 
an inquiry-based activity around it. Simultaneously, the teacher prepares strategies for providing in-class 
attention and after-class tutoring plans for the identified individual students.

(3) “Teacher Teaching Loop” (In-class)
The teacher begins the lesson by introducing a real-life scenario problem. The instruction then focuses 
on guiding students to explore and summarize the specific steps for the targeted technique. Addressing 
the common error, the teacher organizes group discussions, allowing students to self-analyze and correct 
their misunderstandings, thereby implementing a precise teaching intervention.

(4) Closed-loop Feedback (Post-class)
The teacher assigns tiered assignments. Based on the new data from classroom performance and 
assignment completion, the platform regenerates the learning analytics report. This new data indicates 
significant improvement regarding the previously common weakness, though some individual students 
still require further attention. The system again ”optimizes learning path” based on this updated 
information, and the teacher plans the next cycle of ”management intervention.” This concludes one full 
cycle of the “dual-loop” process, immediately initiating a new instructional iteration.
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5. Discussion and conclusion
The “AI Dual-Loop Empowerment” model constructed in this study provides a valuable supplement to existing 
theories of AI in education. It transcends the perspective of treating AI as a mere tool, elevating it to a core driver 
for restructuring the teaching process and optimizing pedagogical relationships.

5.1. Theoretical contribution
The model directly addresses the three major research limitations identified earlier. Firstly, it counters the “tool-
oriented” tendency by proposing a systematic, top-down designed model. Secondly, it remedies the insufficiency 
of “unidirectional” research by elucidating the data interaction mechanism between the dual loops. Finally, 
drawing on theories like distributed cognition, it clarifies the division of roles between teachers and AI within 
“human-AI collaboration,” thereby resolving the ambiguity surrounding its conceptual connotation. This 
direction aligns closely with the ICME-15 agenda of “reconstructing teaching paradigms through AI” [4].

5.2. Practical implications and future research
This model offers a clear blueprint for frontline teachers to integrate AI into their teaching practice, provides 
a feasible entry point for schools to advance their digital transformation, and supplies a theoretical basis 
for educational technology companies to optimize product design. While this study focuses on theoretical 
construction, the model’s efficacy, adaptability to different school contexts, and long-term impact require further 
validation and refinement through rigorous empirical research in subsequent studies.

In summary, the “AI Dual-Loop Empowerment” model proposed herein offers a theoretically coherent 
and mechanistically explicit solution to the core educational contradiction of scaling standardization versus 
personalization. Future empirical research will be dedicated to testing its effectiveness and promoting its deeper 
integration and application across a wider range of educational scenarios.
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