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Abstract: The article introduces proportional reinsurance contracts under the mean-variance criterion, studying the 
time-consistence investment portfolio problem considering the interests of both insurance companies and reinsurance 
companies. The insurance claims process follows a jump-diffusion model, assuming that the risk asset prices of insurance 
companies and reinsurance companies follow CEV models different from each other. In the framework of game theory, the 
time-consistent equilibrium reinsurance strategy is obtained by solving the extended HJB equation analytically. Finally, 
numerical examples are used to illustrate the impact of model parameters on equilibrium strategies and provide economic 
explanations. The results indicate that the decision weights of insurance companies and reinsurance companies do have a 
significant impact on both the reinsurance ratio and the equilibrium reinsurance strategy.
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1. Introduction
Insurance companies can appropriately use reinsurance to share the risks borne by insurers. Reinsurance is 
also an effective mechanism for risk sharing within insurance groups, such as tax reduction and increased 
profitability. The mean-variance criterion is one of the criteria for researching reinsurance investment strategies. 
Its main advantage is that it considers both safety and profitability, achieving a balance between terminal returns 
and risks [1-3]. However, because the variance lacks iterative, dynamic mean-variance is time-inconsistent. 
Time inconsistency can be resolved by a pre-commitment strategy, namely establishing an optimal strategy 
at the initial time and using this strategy at every moment in the future. However, this strategy is not optimal 
for a future moment [4,5]. Another solution is to provide investors with a time-consistent strategy: Björk and 
Murgoci studied generally controlled Markov processes and target functionals within the framework of game 
theory, obtaining an extended Hamilton-Jacobi-Bellman (HJB) equation, using the form of nonlinear system 
equations to determine equilibrium strategies and equilibrium value functions [6]. Zeng and Li first provided a 
general verification theorem of the Black-Scholes model within the Nash equilibrium framework of Björk and 
Murgoci and derived the explicit solution of the optimal time-consistent strategy and optimal value function of 
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reinsurance investment [7]. Zhu et al. studied the nonzero and random differential games between two insurance 
companies under the mean-variance criterion and established extended HJB equations for the situations before 
and after default, providing closed-form solutions for Nash equilibrium in insurance and investment strategies [8].
In recent years, an increasing number of scholars have focused on the investment-reinsurance problem of 
insurance companies under stochastic interest rate models, such as using models like the constant elasticity 
of variance (CEV) model and Heston model to replace constant interest rate geometric Brownian motion to 
describe risk assets. Scholars such as Nie [9], Gu [10], and Cai [11] have considered the optimal investment and 
reinsurance problems of insurance companies under different utility functions when the price of risk assets 
follows the CEV model.
Although there have been fruitful research results on the investment-reinsurance strategies of insurance companies 
based on the CEV model, there are still the following shortcomings: Firstly. previous literature only explains 
the optimal investment strategy of insurance companies from the perspective of insurance companies, without 
considering that the optimal investment strategy of insurance companies may not necessarily be accepted by 
reinsurance companies, thus neglecting the profit issue of insurance groups (groups that have both insurance 
companies and reinsurance companies). Secondly, few scholars have considered the problem of time-consistent 
optimal strategy for insurance groups under the mean-variance criterion. This paper not only considers the optimal 
strategies of both insurance companies and reinsurance companies but also assumes that the claims process 
conforms to the jump-diffusion model, which is more in line with the reality of financial markets.
The remaining structure of this paper is as follows: In Section 2, the wealth process model of the insurance 
group is established; Section 3 presents a validation theorem for a general problem; Section 4 obtains a time-
consistent investment-reinsurance equilibrium strategy by solving the extended HJB equation within the 
framework of game theory; Section 5 provides numerical analysis and economic explanations of the theoretical 
results; Section 6 is the conclusion of this paper; All proofs are included in Appendix A.

2. Money market
2.1. Wealth process
Let  be a complete probability space, and  be a flow defined on this probability space, which 
includes all P-sets and is right continuous. All stochastic processes in this paper are defined on this domain flow 
and are adaptive. Considering unforeseen events in the real world, we assume that the claims process of the 
insurance company follows a jump-diffusion model, as follows:

(1)

where m and n are two positive constants, W0 is a standard Brownian motion. N(t) is a homogeneous Poisson 
process with intensity λ0 ＞ 0, representing the number of claims occurring in the time interval [0,T].  Yi, i = 1,2,… 
are independent and identically distributed (i,i,d) positive random variables, with mean μy = E[Yi] and variance 
σ2

y = E[Y2
i] .

Furthermore, assuming that the premium rate charged by the insurer is calculated based on the principle of 
expectation, then the premium rate is c = (1+θ), where θ ＞ 0 and θ is the safety load factor of the insurance 
company. The surplus process of the insurance company is determined as follows: 

(2)
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Here, θm =(1+ θ) λ0μy. We assume that the insurance company and the reinsurance company enter into a 
proportional reinsurance agreement, and let p(t) denote the insurance coverage ratio of the insurance company at 
time t. At the same time, we assume that the reinsurance premium rate is also charged according to the principle 
of expectation, and the loading factor of the reinsurance company, η, is greater than the insurance company, θ, 
i.e., the premium rate of the reinsurance company is higher than that of the insurance company, otherwise there 
is arbitrage space. In this case, the insurance company should pay a portion of the premium to the reinsurance 
company at a rate of p(t)(1+ η)λ0μy. When there is a proportional reinsurance agreement, the surplus processes 
of the insurance companies and reinsurance companies are:

(3)

(4)

Without the loss of generality, in addition to the insurance business, it is assumed that both insurance companies 
and reinsurance companies can invest in a risk-free asset and a different risk asset from each other. The price 
process of risk-free assets is given by dB(t)= rB(t)dt, where B(0)=B >0. Here, r >0 represents the risk-free 
interest rate. The price process of the risk asset satisfies the CEV model, which was first proposed by Cox 
and Ross [12] and can capture potential fluctuations sensitivity more sensitively. Therefore, it has been used in 
the price models of financial assets [13-15]. The price processes of the insurance companies and the reinsurance 
companies are respectively:

(5)

(6)

where the expected return rate of the risk asset μi>r, volatility σi>r, and similar to previous research [16,17]. For 
convenience, we refer to S1(t) and S2(t) as “risk asset 1” and “risk asset 2,” respectively. When i=1,2, W1 and W2 
are correlated random sources from financial assets to S1(t) and S2(t), and W0,W1,W2 are mutually independent.
Let μ(t)=(π1(t),π2(t),p(t)) be a trading strategy, which includes the reinsurance strategy as well as investment 
strategies of the insurance company and the reinsurance company, where π1(t) and π2(t) represent the amount 
invested in the risk asset S1(t) by the insurance company and the amount invested in the risk asset S2(t) by the 
reinsurance company at the time t. Given a trading strategy μ(t), the wealth processes of insurance companies 
and reinsurance companies are:

(7)

(8)

At the same time, we consider the insurance groups making decisions based on the following weighting 
process:
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(9)

where α and β are two constant in the interval [0,1], and Equations 6–8 generate  the weighted process:

(10)

Note that in Equations 2.1–2.9, α,β can be explained in two different ways. Firstly, insurance companies and 
reinsurance companies may belong to the same group company. In this case, the group company owns 100% α 
of the insurance company and 100% β of the reinsurance company, which Zμ(t) can be interpreted as the total 
surplus of the group company. When the shares of insurance companies and reinsurance companies held by the 
group company are enough to dominate the boards of the two companies, the investment-reinsurance strategy 
of the two companies is determined by the insurance group Zμ(t), so the optimal investment reinsurance strategy 
should be based on the weighted sum process of the group company.
Secondly, if we set β=1–α in Zμ(t), then the parameter  balances the interests of the insurance companies and 
reinsurance companies in determining the optimal investment reinsurance strategy. While α and β are known as 
decision weights, they are not considered controlling variables in this paper because they measure the relative 
decision ability of the insurance companies and the reinsurance companies.
In the admissible strategy (Definition 1), for t [t,T], a trading strategy is {μ(v)=(π1(v),π2(v),p(v))·v [t,T]} 
said to be admissible for initial condition if it satisfies the following two 
conditions:

(a)

(b)

where . In subsequent text, we denote by U(t,z,s1,s2,r) 
the set of all admissible strategies policies with respect to the initial conditions (t,z,s1,s2,r) [t,T]. Based on 
conditions (a) and (b) and the boundedness of parameters, it follows that:

(11)

Therefore, the differential equation representing the wealth process has a unique strong solution for any 
arbitrary ρ [1, ] and condition  satisfies the following conditions [18]:

(12)

3. Optimal investment strategy
This paper considers the dynamic mean-variance criterion. For any , the 
optimization objective of the insurance groups is:

(13)

where U represents the corresponding set of admissible strategies, and γ ＞ 0 is the investors’ risk aversion 
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coefficient. Since the variance object lacks the property of iterative expectation, the Equation 11 does not 
satisfy the Bellman optimality principle, making it time-inconsistent. To find a time-consistent solution for 
Equation 11, we resort to the equilibrium strategy defined in Definition 3 below.
In the time-consistent strategy (Definition 2), we use game theory methods to solve equilibrium strategies for mean-
variance problems by studying a more general problem. Let .  is a 
function of the first parameter t, differentiable on [0, T], and the remaining parameters are quadratically differentiable 
on Q, and  satisfies the polynomial growth (PG) condition.
The general problem for arbitrary functions is defined as follows:

(14)
which .
Here, U(t,z,s1,s2) is a set of admissible strategies for the state (t,z,s1,s2), with its precise definition given in 
Definition 1. In particular, according to the following equation:

(15)

for the time-consistent solution to dynamic problems, the following definition of equilibrium strategy is 
established.
In the equilibrium strategy (Definition 3), given an admissible strategy μ*(t)=(π*1(t),π*2(v),p*(t)) U(t,z,s1,s2), 
the following strategy can be constructed:

Here, , if  for any  and 
(t,z,s1,s2) [0,T]×Q, then we say μ* is an equilibrium strategy, and correspondingly, the equilibrium value 
function is defined as:

(16)

To solve the equilibrium strategy for the mean-variance problem, we establish a verification theorem, which 
gives the extended HJB equation for the general problem. For any , the variational 
operator is defined as follows:

(17)

In the verification theorem (Theorem 1), if there exist two real-valued functions  
satisfying the following equation:

(18)

where F (t, z, s1, s2) = z,

(19)

(20)
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then W (t, z, s1, s2) = F (t, z, s1, s2) and Et, z, s1, s2[Z
μ* (T)] = g (t, z, s1, s2). Hence, the equilibrium strategy is as 

follows [18]:

(21)

4. Temporal consistency strategy under the mean-variance criterion
In this section, we derive the display solutions for the equilibrium strategy and the equilibrium value function. 
Suppose that a sum exists that satisfies the given conditions F (t, z, s1, s2) and g (t, z, s1, s2) in Theorem 1. 
According to the expression Aμ, the Equations 18 and 19 can be rewritten as:

(22)

(23)	

Theorem 2: When α≠β, the equilibrium investment strategies for the insurance companies and reinsurance 
companies are as follows:

(24)

(25)

The equilibrium reinsurance strategy for the insurance company is:

(27)

Additionally, the equilibrium value function is:  V (t, z, s1, s2) =A1(t)z+B1(t)s1+C1(t)s2+D1(t), where A1(t), B1(t), 
C1(t) and D1(t) are provided in Appendix 1.
Theorem 3: When α=β, Equations 24 and 25 remain the equilibrium investment strategies for the insurance 
companies and reinsurance companies. Furthermore, for any measurable function p*:[0,T]→ [0,1], it is a 
solution to the equilibrium reinsurance strategy. In this case, the equilibrium value function is given by:

(28)
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where .

Notably, Theorem 2 indicates that equilibrium strategies depend on the decision weights α and β, as they exist 
in the weighted summation process. The equilibrium reinsurance strategy given by the theorem is as follows:

(29)

Therefore, there are two interpretations of the relationship between reinsurance strategy and α. On the one hand, 
α/(α-β) decreases the value of p* with increasing α; on the other hand,  increases the value 
of p* with increasing α. Furthermore, Equations 24 and 25 indicate that α negatively impacts the investment 
strategy of the insurance company but positively affects the strategy of reinsurance companies.
Based on the results established in Theorem 2, the sensitivity of the equilibrium reinsurance ratio p*(t) to 
various model parameters can be analyzed as follows:
(1) According to Equation 29, we obtain:

(30)

When , the optimal reinsurance equilibrium strategy increases with α, and when , 

the optimal reinsurance equilibrium strategy increases with 𝛽.
(2) It is easy to deduce:

(31)

This implies that the equilibrium reinsurance strategy when α＞β decreases with increasing time t, indicating 
a greater preference for insurance companies in decision-making. Therefore, according to the insurance 
companies’ intention, insurance companies retain more insurance business at later periods, leading to a decrease 
in the reinsurance ratio as time t changes. The equilibrium reinsurance strategy when α＜β increases with 
increasing time t. As time passes, both insurance companies and reinsurance companies expect the potential 
returns on financial asset investments to increase on average, which will enhance their ability to absorb 
insurance risks.
(3) The impact of market parameters on reinsurance strategies also depends on the decision weights α and β.

(32)

This means that when α＜β, the equilibrium reinsurance strategy increases with m, while when α＜β, the 
equilibrium reinsurance strategy decreases with m. The parameter m reflects the expected claim size, so, holding 
other model parameters fixed (especially the volatility n in the claim process Definition 1), increasing the 
expected claims reduces the risk per dollar of insurance liability, making the insurance business more attractive. 
In contrast, if α＜β, more weight is given to reinsurance companies in decision-making, and more policies are 
transferred to reinsurance companies.
(4) Due to the following equation:

(33)
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the safety load η of reinsurance companies has a positive effect on p*(·) for α＜β and a negative effect on p*(·) 
for α＞β. This is consistent with our intuition, as a larger η implies more expensive reinsurance. Therefore, 
when α＜β, decision-makers will consider reinsurance companies more, thereby increasing the reinsurance 
ratio, allowing reinsurance companies to gain more profit with increasing η.
(5) Equation 27 also indicates:

(34)

showing that the equilibrium reinsurance ratio p*(·) when α＜β decreases with increasing risk aversion 
coefficient γ of the decision-maker, while the equilibrium reinsurance ratio for α＞β increases with increasing γ. 
For decision weights α＜β, decision-making relies more on reinsurance companies’ preference than insurance 
companies. Therefore, the greater the risk aversion of reinsurance companies, the less reinsurance they 
undertake, resulting in a decrease in p*(·) with γ.
(6) Equation 27 also indicates:

(34)

This indicates that p*(·) relative to the risk-free rate r decreases for α＜β and increases for α＞β. With 
increasing r, both insurance companies and reinsurance companies expect to earn more returns in financial 
markets, driving capital out of the insurance market. When α＜β, the interests of the reinsurance companies 
dominate the decision on insurance group transaction strategy, leading reinsurance companies to reduce their 
investment in the insurance market and transfer more investment to financial markets.

5. Numerical analysis
This section will provide some numerical examples to illustrate the impact of parameters on the equilibrium 
investment-reinsurance strategy derived from the theorem. Unless otherwise stated, all parameters in this 
section are set as follows: m = 0.5, n = 0.6, η = 0.2, r = 0.05, μ1 = 0.12, σ1 = 0.2, 𝛽1 = 0.9, s1 = 0.5, 𝜇2 = 0.15, 𝜎2 
= 0.3, 𝛽2 = 1.1, s2 = 0.6, 𝛼 = 0.3, 𝛽 = 0.7, γ = 0.5, and T = 10.

Figure 1 illustrates that when α＜β, the optimal reinsurance ratio p*(t) increases with time t, while when 
α＞β, p*(t) decreases with time t. This phenomenon can be explained as follows: as the potential returns on 
financial assets increase, the willingness of insurance companies and reinsurance companies to take risks 
gradually increases over time. Therefore, both parties tend to absorb less insurance risk in the first stage and 
more insurance business in the second stage. Thus, when α＜β, reinsurance companies have more say, and 
more insurance business is transferred to reinsurance companies in the later stage, leading to an increase in 
the reinsurance ratio over time. Conversely, when α＞β, insurance groups prioritize reinsurance profits, and 
insurance risk is transferred to reinsurance companies earlier.
Figures 2–5 represent the impact of market parameters on the equilibrium reinsurance strategy, confirming the 
comments made in the notes. These impacts also depend on the values of the decision weight parameters α and 
β. When α＜β, the equilibrium reinsurance ratio p*(t) increases with increasing 𝛾, m, and r parameters, and 
decreases with increasing t, η, and n parameters; conversely, when α＞β, p*(t) decreases with increasing 𝛾, m, 
and r parameters, and increases with increasing t, η, and n parameters.
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Figure 1. The α and β effect of decision weights on the optimal reinsurance ratio
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Figure 2. The m effect on the optimal reinsurance ratio
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Figure 3. The n effect on the optimal reinsurance ratio
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Figure 4. The η effects on the optimal reinsurance ratio
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Figure 5. The γ effects on the optimal reinsurance ratio

Figures 6–9 depict the sensitivity analysis of the equilibrium investment strategy (π*1,π*2) to various parameters. 
To simplify representation without losing generality, only the equilibrium investment strategy at time t = 0 is 
considered.
Figure 6 (left) illustrates that the risk aversion coefficient γ has a negative impact on both π*1 and π*2. A higher 
γ indicates greater aversion to risk by insurance companies and reinsurance companies. Thus, as γ increases,  
these companies choose to reduce their holdings of risky assets to control risk.
Figure 6 (right) describes the adverse effect of the risk-free assets return rate r on the equilibrium investment 
strategy (π*1,π*2). An increase in the risk-free rate expands investment opportunities for insurance companies and 
reinsurance companies in the financial market. Consequently, they are more inclined to invest in risk-free assets 
and reduce investments in reinsurance assets.
Figures 7 and 9 describe the parameters μ1,μ2 and β1,β2 on the optimal investment strategy π*1 and π*2. This 
indicates that π*1 and π*2 are increasing functions of μ1,μ2 and β1,β2, where μ1,μ2 represent the expected returns 
of risk assets. A higher value of μ1,μ2 signifies higher expected returns of risky assets. Therefore, insurance 
companies and reinsurance companies increase their investments in risky assets to obtain greater returns, 
leading to an increase in the optimal investment strategy π*1 and π*2. The negative impact of the volatility 
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of risky assets on the optimal investment strategy π*1 and π*2 in Figure 8 can also be explained by the same 
theoretical principles.
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Figure 6. (left) The γ impact on (π*1,π*2); (right) The r impact on (π*1,π*2)
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Figure 7. (left) The μ1 impact on (π*1,π*2); (right) The μ2 impact on (π*1,π*2)
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Figure 8. (left) The σ1 impact on (π*1,π*2); (right) The σ2 impact on (π*1,π*2)
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Figure 9. (left) The β1 impact on (π*1,π*2); (right) The β2 impact on (π*1,π*2)

6. Conclusion
From the perspective of insurance companies and reinsurance companies, using game theory and citing 
auxiliary functions and verification theorems, we establish a value function that satisfies the extended HJB 
equation. We guess the form of the solution, obtain the optimal investment and reinsurance strategy under the 
mean-variance optimization target, and conduct a sensitivity analysis of each parameter. The results show that: 
(1) when the decision weight of insurance companies is greater, and as the risk aversion factor increases, the 
expected increase in claim size makes the insurance business even more attractive. Insurance companies will 
thus reduce the number of reinsurances; (2) the influence of the variance coefficient of elasticity on the optimal 
investment strategy is positive. The greater this parameter, the higher the probability of risky asset prices, 
prompting insurers and reinsurers to increase their positions in risky assets; (3) when the insurance company 
has decision-making power, the safety load of the reinsurance company has a negative effect on the insurance 
company. Greater safety loads represent higher reinsurance costs, leading insurance companies to reduce the 
reinsurance ratio.
This paper represents only a preliminary study on the joint benefits of insurance groups, and there are still many 
issues to be further explored. For example, fuzzy aversion can be introduced based on studying the interests of 
insurance groups.
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Appendix A
Proof: Due to the linear structure, according to the boundary conditions, we attempt to guess the solution as 
follows:

Boundary condition:

Substituting the above derivatives to Equations 22 and 23:

(A1)
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(A2)

Differentiating Equation A1 with respect to π1, π2, and p, we obtain the following first-order optimality 
conditions:

(A3)

(A4)

Substituting Equations A3 and A4 into Equations A1 and A2 and rearranging, we obtain:
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To eliminate the dependence on z,S1,S2, the equation can be decomposed as:

Considering the boundary conditions, we obtain:
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When substituting the above formulas into Equations A1 and A2, we get:


