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Abstract: Finding the best model to predict the trend of stock prices is an issue that has always garnered attention, and it is 

also closely related to investors’ investment dynamics. Even the commonly used autoregressive integrated moving average 

(ARIMA), extreme gradient boosting (XGBoost), and long short-term memory (LSTM) have their own advantages and 

disadvantages. We use mean squared error (MSE) to judge the most suitable model for predicting Amazon’s stock price from 

many aspects and find that LSTM is the model with the best fitting effect and the closest to the real curve. However, the 

LSTM model still needs to improve in terms of performance so as to reduce the bias. We anticipate the discovery of more 

models that are apt for predicting stocks in the future. 
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1. Introduction 

Stocks are indeed fascinating. According to Asness, “A stock, also known as equity, is a security that 

represents the ownership of a fraction of the issuing corporation [1].” The ups and downs of stocks reflect 

the operations of the capital market. However, there is a misconception that the stock market is the capital 

market. In addition, the rise and fall of the stock market do not equate with the rise and fall of the real 

economy. This misunderstanding leads to the idea that the capital market can function better when stocks 

rise and real enterprises can receive sufficient support to develop. In fact, the stock market is only a part of 

the capital market; that is to say, the role of the stock market cannot be exaggerated or overlooked. Afterall, 

it is the most active part of the capital market. The economic dynamism of the market is boosted when the 

most dynamic forces come into play. The sharp rise in the stock market proves that the status of the capital 

market in the financial market is constantly rising.  

Besides, the stock market is in a constant change on a daily basis, and the ups and downs of stocks 

affect the investors. The answer to which why people choose to invest in stocks is as follows: “Stocks offer 

investors the greatest potential for growth (capital appreciation) over the long haul [2].” It is precisely 

because of the high rate of return that investors increase their investment in stocks. There are different 

benefits when investing in different stocks, and different investment groups have different definitions of 

stock returns. Only by being careful in each step of the investment can the investor expect a high return.  

Analytically speaking, Amazon’s distinct position in the international market is quite representative. 

The ever-increasing penetration rate of the internet has resulted in an ever-increasing demand for e-

commerce. As an early developing e-commerce company, Amazon occupies a dominant position in the 
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global e-commerce market. Amazon has achieved a monopoly in the industry, and it is often the choice of 

companies that wish to publish and sell products online. Amazon has received many positive and negative 

reviews. Some people think that Amazon is a great place to shop online; it has everything one could possibly 

need; the price is reasonable, and there is quality to the items sold; Amazon is the perfect place to shop 

online! However, some people think that Amazon has poor ethics in the sense that the goods received do 

not conform to the advertised ones. The different experiences of shoppers and the comments made on public 

platforms can affect a company’s image, which in turn affects the company’s stock.  

We first use the most non-complex Fourier transform and average autoregression to observe the basic 

information of Amazon’s stock, followed by autoregressive integrated moving average (ARIMA), extreme 

gradient boosting (XGBoost), and long short-term memory (LSTM) to estimate the stock. The objective is 

to determine the best model for predicting Amazon’s stock price. We discuss our point of view in two parts: 

the first part is a review of literature, in which we find the best model by reviewing some relevant 

information and looking for models that study the stock market for comparison; the second part focuses on 

describing the experimental results through continuous analysis and comparison of data, concluding and 

indicating the expectations of the future stock market. 

 

2. Literature review 

In order to find the most suitable model to predict Amazon’s stock price, we use moving average (MA) and 

Fourier transform to observe, followed by ARIMA, LSTM, and XGBoost to predict. In 1998, Ho and Xie 
[3] studied the approach to repairable system reliability forecasting based on ARIMA. They concluded that 

the ARIMA model is an alternative that provides satisfactory results for forecasting. In 2019, there was a 

global outbreak of the coronavirus (COVID-19); Benvenuto et al. [4] used a simple econometric model –

ARIMA – to forecast the spread of COVID-19 and the trend of COVID-19’s incidence and prevalence. 

Zhang [5] proposed an approach that combined both ARIMA and artificial neural network (ANN) models 

to improve data accuracy, taking advantage of the unique strength of ARIMA and ANN models in linear 

and nonlinear modeling. Contreras [6] used ARIMA to predict the next-day electricity prices for maximum 

benefits. Ariyo [7] presented the extensive process of the stock price predictive model by using the ARIMA 

model to analyze the New York Stock Exchange (NYSE) and Nigeria Stock Exchange (NSE); the results 

showed that the ARIMA model has a strong potential for short-term forecast. Smagulova [8] investigated 

an emerging topic that uses a memristor circuit to achieve the hardware acceleration of LSTM because 

LSTM is a recurrent neural network with a state memory and multilayer cell structure. Gers [9] focused on 

LSTM because it has a shorter time lag than RNNs on tasks, making it an accurate measurement or 

generation of time intervals. Graves [10] studied the TIMIT speech corpus with bidirectional and 

unidirectional LSTM networks and found that LSTM outperforms RNNs. Chen [11] forecasted China’s stock 

returns using the LSTM model, improving its accuracy from 14.3% to 27.2%, and reflecting the potential 

of the LSTM model for stock price prediction. Fu [12] used the LSTM and gated recurrent units (GRU) 

neural network (NN) method to forecast real-time traffic flow and control traffic. As for the XGBoost model, 

Liao [13] constructed a dynamic weighting multi-factor stock selection strategy established on the XGBoost 

model. He used the XGboost machine learning method to forecast the information coefficient (IC) of 

components, revealing that the XGBoost model is useful for IC coefficient prediction. Basak [14] used two 

algorithms, random forests and gradient boosted decision trees, to facilitate the connection of the 

concerning – whether the stock price will change with respect to the existing price n days earlier. Kumar 
[15] used data from Yahoo Finance and several algorithms based on seasonal (S)ARIMA and XGBoost to 

estimate the value. Gumelar [16] experimented with about 25 companies to forecast the closing price by 

using two highly accurate analyses, LSTM and XGBoost, and found that XGBoost has a 99% prediction 

accuracy. In this study, we use Fourier transform and MA to observe the basic information of Amazon, 
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followed by ARIMA, LSTM, and XGBoost to estimate the stock price, aiming to determine the most 

suitable model for predicting Amazon’s stock price. 

 

3. Method 

3.1. Autoregressive integrated moving average  

The ARIMA model was introduced by Box and Jenkins in 1970 [7]. It is one of the most popular methods 

used for prediction. Also known as the Box-Jenkins method, the ARIMA model consists of a set of activities 

for identifying, estimating, and diagnosing ARIMA models using time series data. The ARIMA model has 

shown to be effective for accurate short-term prediction. Its performance in short-term prediction 

outperforms complex structural models. In the ARIMA model, the value of a variable in the future is a 

linear combination of past values and past errors, expressed as follows: 

 

𝑌𝑡 = 𝜙0 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 

 

where 𝑌𝑡 is the actual value and 𝜀𝑡 is the random error at 𝑡; 𝜙𝑖 and 𝜃𝑗 are the coefficients, while 𝑝 

and 𝑞 are integers that are often referred to as autoregressive and moving average, respectively. 

 

3.2. Long short-term memory  

At time 𝑡, 𝑥𝑡 is the input data of the LSTM cell, ℎ𝑡−1  is the output of the LSTM cell at the previous 

moment, 𝑐𝑡 is the value of the memory cell, and ℎ𝑡 is the output of the LSTM cell. The calculation process 

of the LSTM unit can be divided into several steps [17]. 

(1) First, calculate the value of the candidate memory cell �̃�𝑡; 𝑊𝑐 is the weight matrix, and 𝑏𝑐 is the bias. 

 

�̃�𝑡 = tanh(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

 

(2) Calculate the value of the input gate 𝑖𝑡; the input gate controls the update of the current input data to the 

state value of the memory cell, σ is the sigmoid function, 𝑊𝑖 is the weight matrix, and 𝑏𝑖 is the bias.  

 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1 ,𝑥𝑡] + 𝑏𝑖                                           

 

(3) Calculate the value of the forget gate 𝑓𝑡; the forget gate controls the update of the historical data to the 

state value of the memory cell, 𝑊𝑓 is the weight matrix, and 𝑏𝑓 is the bias. 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

 

(4) Calculate the value of the current moment memory cell 𝑐𝑡; 𝑐𝑡−1 is the state value of the last LSTM unit.  

 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡                                             

 

where ∗ represents the dot product. The update of memory cell depends on the state value of the last 

cell and the candidate cell, and it is controlled by the input gate and forget gate. 

(5) Calculate the value of the output gate 𝑜𝑡; the output gate controls the output of the state value of the 

memory cell, 𝑊𝑜 is the weight matrix, and 𝑏𝑜 is the bias. 

 

𝑜𝑡 =  𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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(6) Finally, calculate the output of the LSTM unit ℎ𝑡. 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh 𝑐𝑡 

 

Benefitting from the three control gates and memory cell, LSTM store, read, reset, and update long time 

information easily. It is important to note that the dimensions of the output can be controlled by setting the 

dimensions of the weight matrix due to the sharing mechanism of the LSTM internal parameters. LSTM 

establishes a long time-delay between input and feedback. The gradient will neither explode nor disappear 

because the internal state of the memory cell in this architecture maintains a continuous error flow [18]. 

 

3.3. Extreme gradient boosting  

The XGBoost algorithm is based on gradient boosting decision tree (GBDT) [19]. Compared with GBDT, 

the advantage of XGBoost is that it supports linear classifiers and performs Taylor expansion for the cost 

function by introducing a second derivative to ensure more accurate results. There principles of XGBoost 

are discussed below.  

The XGBoost model uses additive training method to optimize the objective function, which means 

the optimization process of the latter step relies on the result of its previous step. The 𝑡-th objective function 

of the model can be expressed as follows: 

 

𝑜𝑏𝑗(𝑡) = ∑ 𝑙 (𝑦𝑖, �̂�𝑖
𝑡−1 + 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑛

𝑖=1                     

 

where 𝑙 represents the loss term of the 𝑡-th round, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 represents a constant term, and Ω is the 

regularization term of the model, shown as follows: 

 

Ω(𝑓𝑡) = Υ ∙ 𝑇𝑡 + 𝜆
1

2
∑ 𝑤𝑗

2𝑇
𝑗=1                                             

 

where both Υ and 𝜆 are customization parameters. Generally, the larger these two values are, the simpler 

the structure of the tree is, and the overfitting problem can be solved effectively. Performing a second-order 

Taylor expansion on (8), the process is given by 

 

𝑜𝑏𝑗(𝑡) = ∑ [𝑙(𝑦𝑖, �̂�𝑖
𝑡−1) + 𝑔𝑖𝑓𝑖(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑛
𝑖=1          

 

where 𝑔 is the first derivative, and ℎ is the second derivative. They can be described as follows: 

 

𝑔𝑖 = 𝜕�̂�𝑖
𝑡−1𝑙(𝑦𝑖, �̂�𝑖

𝑡−1)                                                   

 

ℎ𝑖 = 𝜕
�̂�𝑖

𝑡−1
2 𝑙(𝑦𝑖, �̂�𝑖

𝑡−1)                                                   

 

Substitute (9), (11), and (12) into (10), and take the derivative. Then, solutions can be obtained from (13) 

and (14) as follows: 

 

𝑤𝑗
∗ = −

∑ 𝑔𝑖

∑ ℎ𝑖+𝜆
                                 

                       

𝑜𝑏𝑗∗ = −
1

2
∑

(∑ 𝑔𝑖)
2

∑ ℎ𝑖+𝜆

𝑇
𝑗=1 + 𝛾 ∙ 𝑇                                           

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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where 𝑜𝑏𝑗∗ represents the score of loss function; the smaller the score, the better the structure of the tree. 

𝑤𝑗
∗ refers to the solution of weights.  

 

4. Experiment and analysis 

With the goal of finding the best model for predicting Amazon’s stock price, MA and Fourier transform 

were first applied to observe the basic information of Amazon.  

We extracted yearly historical Amazon stock price from 2010 to 2019 from Yahoo Finance, including 

its open price, high price, low price, closing price, etc. Then, we selected its closing price and drew a broken 

line chart to observe its rising and falling trends. In Figure 1, we can see that the closing price of Amazon’s 

stock remained at about 250 USD and gradually rose with small fluctuations from 2010 to 2013. Amazon’s 

“online retail” has achieved success at that time, and its profit growth and valuation have continued to 

improve since then. Since 2014, its closing price has seen a rapid increase, reaching nearly 1,000 USD in 

2018, but with significant fluctuations. In less than a year from 2018, the closing price of Amazon’s stock 

jumped from less than 1,000 USD to about 2,000 USD; it then fell sharply to about 1,500 USD in 2019 

after reaching a peak. Amazon is the largest online e-commerce company in the United States. With the 

increase in demand for online shopping in the United States and the good e-commerce shopping experience 

provided by Amazon, the development of its e-commerce scale still maintains a relatively high growth. 

Additionally, its business scale continues to expand; this is one of the main reasons for the rise of its stock 

price. Taking April 20, 2016, as the boundary, the data is divided into two subsets: training and test datasets 

(Figure 1).   

 

 
Figure 1. Amazon’s stock price 

 

MA7, MA21, Closing Price, Upper Band, and Lower Band are used as technical indicators for stock 

forecasting from 1850 to 2250, as shown in Figure 2. We set two moving averages with different 

calculation days, 7 days and 21 days, to understand the overall operating trend of the stock price from 

different periods. From Figure 2, we can see that the trend of MA7 and MA21 is consistent with the Closing 

Price, staggered with it many times, and fluctuates between the Upper Band and Lower Band. From 1970 

to around 2200, the Closing Price, MA7, and MA21 increased significantly, but decreased after reaching a 

peak in 2200.  
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Figure 2. Technical indicators for Amazon – last 400 days 

 

Using momentum and moving average convergence/divergence (MACD), we measured the rate of 

change of Amazon’s stock price during this period and reflected it directly in Figure 3. Two green 

horizontal dotted lines are marked in Figure 3 at positions 15 and -15. It can be seen that the trend of 

Momentum is stable, fluctuating up and down around the green horizontal dotted line at 15. Momentum 

can be seen to be slightly lower than the green horizontal dotted line at 15 between 1850–2050. It then 

overlaps with the green horizontal dotted line at 15 between 2050. After 2110, Momentum can be seen to 

be slightly above the green horizontal dotted line at 15 before overlapping the line again around 2210. It 

can be seen that MACD (green dash-dotted line) fluctuates greatly between the green horizontal dotted line 

at 15 and -15 in 1850–1970, with a relatively stable trend. The majority of MACD are above the green 

horizontal dotted line at 15 in 1970–2200, resulting in several rises with large fluctuations, but there is a 

lower trend from 2200–2260. 

 

 
Figure 3. MACD 

 

Historical stock price is a large number of noisy data. Stock price changes on a daily basis, and not 

every indicator can be used to predict the stock market. Therefore, we use Fourier transform to remove the 

noise in the original data. In order to see the denoising effect from an intuitive perspective, we collected 

2,000 days of Amazon’s daily closing price data, as shown by the purple curve in Figure 4. 

We then use Fourier transform with 3, 6, 9, and 100 components and compare the curve with the real 

price, as shown in Figure 4. With the increase of components, we can see that the curve, after noise filtering, 

is more consistent with the real data trend, such as the Fourier transform with 100 components represented 

by the red curve. 
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Figure 4. Amazon’s (closing) stock price and Fourier transforms 

 

In the experiment, we use three prediction methods: ARIMA, XGBoost, and LSTM. By comparing the 

MSE obtained, we can judge the accuracy of the model in predicting Amazon’s stock price. 

We match ARIMA to the entire dataset and check the residuals. Built in Panda, according to its 

autocorrelation diagram, as shown in Figure 5, we can see a positive correlation with the first 500–700 lags 

and a negative correlation with the first 700–2000 lags. Therefore, a good starting point for the model 

parameter AR can be 5. Here, ARIMA(5,1,0) model is applied. This sets the lag value to 5 for AR, utilizes 

a difference order of 1 to make the time series stationary, and uses a MA model of 0. When fitting the 

model, it provides a lot of debugging information about the fitting of the linear regression model. Turn it 

off by setting the DISP parameter to 0.   

Briefly, we fit the ARIMA(5, 1, 0) model, with conditional sum-of-squares (CSS) as the fitting method, 

and Akaike information criterion (AIC) and Bayesian information criterion (BIC) as the model parameters. 

 

 
Figure 5. Autocorrelation of Amazon’s closing stock price 
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The algorithm forecasts the expected value (yhat), adds yhat to the prediction data structure, and then 

adds the actual value to the test set for model refining and re-fitting. Eventually, having built the prediction 

and history data structures, the final output test MSE value is 557.865. Compared with the actual price, the 

predicted line chart of Amazon’s stock price is drawn, as shown in Figure 6. We can see that the predicted 

value of the model is close to the actual value, and the model fitting effect is good.  

 

 
Figure 6. ARIMA model on Amazon’s stock 

  

In order to evaluate the model performance accurately, the data is divided into a training set and a 

validation set. By calculating the training set and the validation set, the data respective are obtained. The 

XGBoost parameters are as follows: gamma = 0.0, n_estimators = 200, base_score = 0.7, colsample_bytree 

= 1, and learning _ rate = 0.05. We then obtain the root mean squared error (RMSE) of the training set and 

validation set, respectively. With the increasing number of iterations, the RMSE of the training set gradually 

approaches 0, while the RMSE of the validation set gradually approaches 600. 

We applied a stacked LSTM model. The loss of the model training process (on the training set) is 

continuously optimized as the training process advances. The initial optimization and loss decrease rapidly, 

and then gradually stabilize. From the running results of the code, the MSE of the training set reduced to 

0.0524, while that of the verification set reduced to 0.0514, as shown in Table 1. 

 

Table 1. MSE in LSTM model 

Epochs MSE training/validation 

10 0.0614 / 0.0598 

30 0.0591 / 0.0586 

60 0.0569 / 0.0560 

80 0.0546 / 0.0533 

97 0.0524 / 0.0523 

99 0.0529 / 0.0514 
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By observing the MSE, we can see the performance of the LSTM model. Compared with the training 

set, the effect on the test set is slightly biased, but the overall trend is still well predicted.  

Three prediction methods are used in total, and the MSE obtained is summarized in Table 2. It is 

evident that MSE is much smaller than ARIMA and XGBoost when the LSTM model is used to predict 

Amazon’s stock price. It is clear that the LSTM model has obvious advantages in meeting our demand for 

forecasting Amazon’s stock price. 

 

Table 2. MSE of three models 

Model MSE 

ARIMA 557.865 

XGBoost 360,000 

LSTM 0.0514 

 

5. Conclusion 

By looking at Amazon’s stock using a simple data model and comparing the three models, the following 

conclusions can be drawn. 

First of all, the stock trends and closing price curves of MA7 and MA21 learned in two-calculation 

days are basically the same. Secondly, using the stock change rate observed by Momentum and MACD, it 

is found that Momentum tends to be stable but MACD has several large fluctuations. Third, after denoising 

with Fourier transform, with the increase of components, the denoised curve is more consistent with the 

curve of the real data. By comparing the three models – ARIMA, XGBoost, and LSTM – the MSE is 

obtained to judge the stock price accuracy. The final comparison shows that LSTM is the best model for 

predicting Amazon’s stock price. In order to evaluate the MSE model performance, we split the data into a 

training set and a validation set. When using the LSTM model to predict Amazon’s stock price, MSE is 

much smaller than ARIMA and XGBoost. 

When looking at the performance of the LSTM model, although the impact on the test set is slightly 

skewed compared to the training set, the overall trend is still very predictable. In the future, this model can 

be further studied, which would be a good research direction for predicting stock prices and understanding 

the stock market. 
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