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Abstract: Against the backdrop of the rapid development of the digital economy, internet dispatching platforms such 
as food delivery and ride-hailing services have become key urban infrastructure. However, they generally face the core 
contradiction between dynamic demand fluctuations and rigid service capacity constraints. This paper decomposes 
the dispatching system into a two-stage closed-loop structure of “waiting and service”. Combining queuing theory 
principles, AI empowerment characteristics, and introducing user loss aversion psychology and reference utility features, a 
configuration model covering basic capacity and safety capacity is constructed to explore optimal capacity strategies under 
profit-oriented and welfare-oriented orientations. Numerical examples verify the model’s effectiveness. Results show 
that the optimal capacity consists of basic capacity and safety capacity, with the two-stage safety capacity maintaining a 
specific matching ratio. Moreover, AI empowerment reduces the basic capacity demand in the waiting stage but requires 
simultaneous optimization of service stage capacity to avoid new bottlenecks. Consequently, platform positioning and user 
behavior characteristics significantly affect capacity configuration efficiency. The research conclusions provide theoretical 
support and practical guidance for dispatching platforms to achieve refined operations and balance efficiency with user 
experience.
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1. Introduction
With the deep integration of digital technology and lifestyle service scenarios, internet dispatching platforms 
have become the core hub connecting supply and demand sides. The market scale in fields such as food 
delivery, ride-hailing, and same-city instant services continues to expand. According to iResearch data, China’s 
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instant delivery market transaction volume exceeded 500 billion Chinese Yuan in 2023, and the daily average 
number of ride-hailing orders exceeded 300 million. The service capacity of dispatching platforms directly 
affects urban operational efficiency and residents’ quality of life. 

However, such platforms have always faced prominent operational pain points, For instance, the demand 
side exhibits significant time-period fluctuations (e.g., morning peak, dinner time), weather sensitivity (e.g., 
rainfall, high temperature), and sudden scenario characteristics (e.g., large-scale events, holidays). In contrast, 
the supply-side service capacity (service personnel, equipment resources) has rigid constraints, leading to 
frequent supply-demand imbalances, such as order backlogs and excessively long user waiting times during 
peak hours, and service personnel idleness and high operational costs during off-peak hours.

Based on this, this paper divides the internet dispatching system into two stages, ”waiting-service”, 
constructs a theoretical model of capacity configuration by combining AI technology empowerment 
characteristics and user loss aversion psychology, clarifies the optimal ratio of basic capacity to safety capacity, 
and reveals the law of coordinated matching of two-stage capacity. It provides a new solution for platforms 
to improve operational efficiency and optimize user experience, while supplementing empirical support for 
theoretical research in related fields.

2. System model and problem description
2.1. System structure
The service process of an internet dispatching system can be clearly divided into a coupled two-stage closed-
loop structure as follows:

(1)	 Waiting stage: From the moment a user places an order on the platform to when the order enters the 
system, waits to be assigned to a suitable service personnel (e.g., rider, driver), and is successfully 
dispatched. The core of this stage is the “queuing” and “matching” of orders;

(2)	 Service stage: From the moment service personnel accept the order to completing pickup, delivery 
or service, and finally ending the order. The core of this stage is the “execution” and “completion” of 
services, which directly determines the actual throughput capacity of the system.

There is a significant interactive effect between the two stages, where the matching quality in the waiting 
stage affects the route efficiency in the service stage, while the capacity redundancy in the service stage 
determines the order backlog threshold in the waiting stage, forming a dynamic cycle of “matching-execution-
feedback”.

2.2. Core problems
The core goal of capacity configuration is to achieve optimal overall system efficiency through resource 
investment and rule design. Specifically, it is necessary to solve three types of key problems as outlined:

(1)	 Proportion division between basic capacity and safety capacity: How to set the basic capacity to meet 
daily demand and the safety capacity to cope with peak fluctuations, balancing operational costs and 
service stability;

(2)	 Coordinated matching of two-stage capacity: How to avoid system bottlenecks caused by excess or 
insufficient capacity in a single stage, and achieve dynamic adaptation between matching efficiency in 
the waiting stage and execution efficiency in the service stage;
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(3)	 Capacity reconstruction under AI empowerment: How does the efficiency improvement of AI 
technology in a single stage (e.g., intelligent matching, route optimization) affect the overall capacity 
configuration, and how to avoid new contradictions arising from technological empowerment.

3. Theoretical model construction
3.1. Basic assumptions
Based on queuing theory principles and the actual operational characteristics of dispatching systems, the 
following core assumptions are made:

(1)	 Order arrival distribution: The effective order arrival process follows a Poisson distribution with an 
arrival rate λ, which is consistent with the order generation rules in scenarios such as food delivery and 
ride-hailing;

(2)	 Service rate distribution: The matching rate μ1 in the waiting stage and the execution rate μ2 in the 
service stage both follow exponential distributions, satisfying the memoryless property;

(3)	 System steady-state assumption: The service rates of both stages are greater than the order arrival rate (μ1 
> λ, μ2 > λ) to avoid infinite order backlogs;

(4)	 AI empowerment assumption: AI technology acts on the waiting stage, increasing the matching rate 
to (1 + kAI) μ1 (kAI ≥ 0 is the empowerment level), while generating additional costs CAI positively 
correlated with the empowerment level.

3.2. Parameter definition
The definition of parameters is as listed:

(1)	 Demand-side parameters: λ is the effective order arrival rate; h is the user’s unit time waiting cost; V is 
the upper limit of the user’s reservation value; p is the service price;

(2)	 Supply-side parameters: μ1 is the initial matching rate in the waiting stage; μ2 is the execution rate in 
the service stage; c1 and c2 are the unit capacity maintenance costs of the two stages, respectively;

(3)	 AI empowerment parameters: kAI is the AI empowerment level; CAI is the additional cost of AI 
application;

(4)	 User behavior parameters: r is the user expectation coefficient; η is the user reference sensitivity, 
reflecting loss aversion psychology (the degree of aversion to overtime is higher than the satisfaction 
with early completion).

3.3. Objective function construction
3.3.1. User utility function
User utility is a core indicator of user experience, determined by the reservation value of the service, payment 
price, waiting cost, and the deviation between actual waiting time and expected waiting time. Considering users’ 
loss aversion characteristics and reference utility features for waiting time, this paper constructs the following 
user utility function:

Where W1 is the actual time consumed in the waiting stage, W2 is the actual time consumed in the service 
stage, and the total waiting time W = W1 + W2
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According to the M/M/1 model of queuing theory, the average time consumed in the waiting stage under 
steady state is W1=1/(μ1-λ), and the average time consumed in the service stage is W2=1/(μ2-λ). This utility 
function includes four core parts: the first part V-p is the user’s basic utility, i.e., the value obtained by the user 
from the service minus the paid price; the second part h(W1 + W2) is the user’s waiting cost, the longer the 
waiting time, the lower the user utility; the third part is the user’s reference utility, reflecting the impact of the 
deviation between actual waiting time and expected waiting time on user utility. When the actual total waiting 
time is less than or equal to the expected waiting time,the user obtains positive reference utility; when the actual 
total waiting time is greater than the expected waiting time,the user obtains negative reference utility,and the 
absolute value of the negative utility is larger, reflecting the user’s loss aversion psychology.

3.3.2. Platform objective function
Internet dispatching platforms have diverse operational objectives, and different platform positions and market 
strategies lead to different goal orientations. This paper mainly considers two typical platform objectives: profit 
orientation and welfare orientation, and constructs corresponding objective functions respectively as follows: 

(1)	Profit-oriented platforms: Taking profit maximization as the core objective, their profit comes from 
order revenue. Costs include waiting stage capacity maintenance costs, service stage capacity maintenance 
costs, and additional AI technology application costs. The profit function is:

Under profit orientation, the platform’s capacity configuration strategy will give priority to balancing 
costs and benefits, and achieve profit maximization by reasonably adjusting the two-stage capacity and AI 
empowerment level.

(2)	Welfare-oriented platforms: Taking social welfare maximization as the core objective, social welfare 
includes total user utility and platform net profit. The welfare function is:

Welfare-oriented platforms pay more attention to user experience and overall system efficiency. Their 
capacity configuration strategy will seek a balance between user utility and platform costs, appropriately 
sacrificing part of the profit to improve user experience and social welfare.

3.4. Derivation of optimal capacity configuration
To solve the optimal capacity configuration strategy under different goal orientations, this paper uses the 
Lagrange multiplier method to solve the extreme value of the objective function. In the solving process, the 
waiting time in the user utility function is replaced by the average time under the steady state of queuing theory, 
and the matching rate of the waiting stage after AI empowerment is substituted into the objective function to 
construct the Lagrange function. The partial derivatives of μ₁ and μ₂ are calculated and set to zero to obtain the 
first-order optimal condition, and then the two-stage optimal capacity configuration formula is derived. Through 
solving, this paper obtains the following core conclusions. 

3.4.1. Law of capacity structure division
Regardless of whether the platform is profit-oriented or welfare-oriented, its optimal capacity consists of two 
parts: basic capacity and safety capacity. The basic capacity is used to meet the order arrival demand under 
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steady state, and its size is equal to the effective order arrival rate λ; the safety capacity is used to cope with 
demand fluctuations, and its size is related to factors such as user waiting cost, user reference sensitivity, service 
price, and capacity maintenance cost. The optimal capacity configuration formulas for the two stages are:

Where the part inside the square root is the safety capacity, and μ₁^, μ₂^ are the optimal capacities of the 
two stages, respectively. The optimal matching ratio of the two-stage safety capacity is:

After AI empowerment,the basic capacity of the waiting stage decreases to λ/(1 + kAI),and the safety 
capacity matching ratio is adjusted to:

This conclusion indicates that AI empowerment not only improves the efficiency of the waiting stage 
but also changes the matching ratio of the two-stage safety capacity. If the platform only improves the AI 
empowerment level of the waiting stage without synchronously optimizing the capacity of the service stage, the 
service stage will become a new system bottleneck. Therefore, when applying AI technology, the platform must 
synchronously adjust the two-stage capacity ratio to achieve the coordinated advancement of technological 
empowerment and capacity optimization.

4. Key strategies for two-stage capacity configuration
4.1. Capacity configuration strategy for the waiting stage
4.1.1. Dynamic demand response mechanism
The order arrival rate  is predicted using historical data and real-time contextual features, including weather 
conditions, time periods, and special events, and is used to determine dynamic system thresholds. When the 
number of pending orders exceeds the threshold, a coordinated control strategy is triggered: price incentives are 
adjusted (e.g., increasing delivery fees), cross-regional scheduling is activated to dispatch nearby idle personnel, 
and demand guidance is provided by informing customers of expected waiting times. Together, these measures 
rapidly rebalance supply and demand.

4.1.2. AI-empowered intelligent matching optimization
Order characteristics, including pick-up and delivery locations and time-limit requirements, and service 
personnel characteristics, such as current location and historical efficiency, are integrated through machine 
learning algorithms to achieve globally optimal matching. This approach reduces empty driving rates while 
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enabling differentiated matching priorities for urgent and member orders, thereby improving service quality and 
the satisfaction of high-value users.

4.1.3. Elastic combination of basic-safety capacity
A fixed base capacity is configured to meet routine daily demand, while a hybrid “full-time + crowdsourcing” 
model is adopted to provide flexible safety capacity. Crowdsourcing personnel are activated to supplement 
capacity during peak periods and scaled down during off-peak periods to control costs, thereby maintaining 
optimal capacity utilization.

4.2. Capacity configuration strategy for the service stage
4.2.1. Route optimization and regional scheduling
Real-time route planning algorithms are used to optimize “one-pickup and multiple-delivery” routes, thereby 
reducing service time per order. Demand hotspots are predicted using heat-map analysis, enabling advance 
personnel positioning and a shift from passive order acceptance to active standby, which improves the service 
rate μ2.

4.2.2. Service personnel capacity management
Standardized service processes and systematic training programs are established to enhance operational 
proficiency. Subjective initiative is encouraged through incentive mechanisms, such as efficiency scores and 
positive review rates. Following AI-enabled efficiency improvements in the waiting stage, it is necessary to 
synchronously expand safety capacity in the service stage to absorb the increased service pressure generated by 
higher throughput.

4.2.3. Balance control of cost and efficiency
Safety capacity is adjusted based on the trade-off between unit capacity cost c2 and user waiting cost h. When 
h is high, indicating strong user sensitivity to waiting, safety capacity is appropriately increased. Conversely, 
when c2 is high, a portion of human capacity is substituted with technical optimization, such as intelligent route 
planning, to reduce overall costs.

4.3. Two-stage coordinated optimization strategy
A linked monitoring system is established for key indicators across the two stages, including waiting time, order 
acceptance rate, delivery time limits, and personnel idle rates, to prevent system imbalance arising from single-
stage optimization. For example, when AI-driven matching efficiency in the waiting stage is improved, service-
stage capacity must be synchronously expanded to eliminate the emerging bottleneck of “fast matching but 
slow execution.” Capacity configuration ratios are then dynamically adjusted through real-time data feedback to 
achieve global system optimization.

5. Numerical examples and management implications
5.1. Numerical example verification
Parameters are set based on the actual operational data of the dispatching system: h = 1.6, α = 0.6, r = 1.1, c1 = 0.3, 
c2 = 0.5, V = 6, λ = 10, CAI = 1. The following key conclusions are obtained through numerical simulation:
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(1)	 When the AI empowerment level kAI increases to 1, the basic capacity of the waiting stage decreases 
by more than 30%, and the safety capacity is saved by 25%, but the safety capacity of the service stage 
needs to be increased by 15% to match the efficiency; 

(2)	 Profit-oriented platforms are more inclined to control safety capacity investment, while welfare-
oriented platforms will configure more safety capacity to reduce user waiting time; 

(3)	 When the user expectation coefficient r is in the interval [0.8,1.3], it is difficult for the platform to 
accurately judge user sensitivity, which is prone to capacity configuration deviations, and strategies 
need to be adjusted through dynamic monitoring.

5.2. Management implications
AI empowerment needs to consider the whole-process optimization. Only improving the matching efficiency 
of the waiting stage may trigger bottlenecks in the service stage. The platform should synchronously adjust 
the two-stage capacity ratio according to the kAI value to avoid “one-sided optimization” of technological 
empowerment. Capacity configuration should be in line with user psychology. Based on users’ reference 
sensitivity and loss aversion characteristics for waiting time, prioritize configuring safety capacity in the 
service stage to reduce the risk of waiting overtime. Profit-oriented platforms can dynamically adjust safety 
capacity according to the cost-benefit ratio; welfare-oriented platforms need to seek a balance between capacity 
investment and user experience, and appropriately increase the proportion of basic capacity.

6. Conclusion
This paper divides the internet dispatching system into two stages, ”waiting-service”, constructs a theoretical 
model of capacity configuration by combining queuing theory, AI empowerment characteristics, and user 
behavior psychology, and reveals the optimal configuration law of basic capacity and safety capacity and 
the two-stage coordination mechanism. Research shows that the optimal capacity configuration needs to 
comprehensively consider the platform’s operational objectives, user behavior characteristics, and technological 
empowerment level, and achieve supply-demand balance and efficiency improvement through strategies such 
as dynamic demand response, AI intelligent matching, route optimization, and coordinated scheduling. Future 
research can further expand the scenario boundaries, incorporate factors such as multi-regional coordinated 
scheduling and service personnel heterogeneity (efficiency differences, preference differences), and construct 
a multi-objective capacity configuration model closer to reality. Meanwhile, conduct A/B testing combined 
with empirical data to verify the applicability of the model in different dispatching scenarios, providing more 
accurate decision support for the refined operation of platforms.
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