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Abstract: The symposium on industrial green and low-carbon development held by the Ministry of Industry and 
Information Technology in January 2024 emphasized the need to steadily promote carbon reduction in the industrial sector, 
and improving the efficiency of green technology innovation in industrial enterprises has important practical significance 
in promoting their green transformation and upgrading. Therefore, this article uses inter-provincial panel data from 2005 
to 2022, and constructs super efficiency EBM model, ML index model, Dagum Gini coefficient model, and spatial Durbin 
model to measure, decompose, analyze the sources of differences and influencing factors in the two-stage efficiency of 
industrial enterprises. The results show that the efficiency of technology research and development is higher than the 
efficiency of technology transformation, and the efficiency level of each stage is directly proportional to the economic 
development level of the region. The scale efficiency level of each stage remains stable at 0.9 or above, and the low pure 
efficiency is an important reason for the significantly low efficiency. The efficiency level of each stage shows an increasing 
trend from 2005 to 2022, and the efficiency level of each stage in the eastern region is higher than that of other regions. 
The efficiency level of China’s research and development stage shows a good development trend, but there is insufficient 
coordination between technological efficiency and technological progress in the transformation stage, and there are 
significant bottlenecks in the technological progress index. The differences in efficiency levels between different stages 
mainly come from the differences in efficiency levels between regions, with more significant differences between the 
eastern region and other regions. The industrial structure and market competitiveness have a significant promoting effect 
on efficiency levels, while environmental regulations have a significant inhibitory effect on efficiency levels.
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1. Introduction
The report of the 20th Party Congress clearly puts forward that by 2035, a new type of industrialization will be 
basically realized, which is defined as “industrialization + informatization + intelligentization + greenization”. 
In January 2024, the Ministry of Industry and Information Technology held a symposium on the green and low-
carbon development of industry to comprehensively promote the deployment of industrial green and low-carbon 
development. The meeting highlighted the necessity to steadily promote carbon emission reduction in the industrial 
sector, vigorously support green and low-carbon industries, help traditional industries realize green upgrading, 
and accelerate the pace of synergies between pollution reduction and carbon reduction. New quality productivity 
is a living force that can promote scientific and technological innovation, integrate and utilize factor resources, 
and cultivate new advantages in industrial competition, which is spawned by revolutionary breakthroughs in 
technology, innovative allocation of production factors, and in-depth transformation and upgrading of industries. 

Since September 2023, General Secretary Xi Jinping has repeatedly emphasized the need to focus on 
integrating scientific and technological innovation resources, leading the development of strategic emerging 
industries, and promoting the in-depth transformation and upgrading of industries, so as to accelerate the formation 
of new quality productivity. Against the background of an industrial value added of 30.1% of GDP in 2024, new 
industrialization remains the main battleground for new quality productivity. Therefore, research on the efficiency 
of green technological innovation of industrial enterprises is of great significance in boosting the transformation 
and upgrading of China’s industrial enterprises to green and low-carbon. 

In existing studies, efficiency measurement methods mainly use frontier analysis. The frontier analysis 
method contains the parametric method represented by stochastic frontier analysis (SFA) and the nonparametric 
method represented by data envelopment analysis (DEA), which derives a variety of improved models such 
as SBM and EBM. Additionally, research targets measured by efficiency are abundant, Liu et al. used three-
stage DEA to study the innovation efficiency of state-level high-tech industrial development zones in Sichuan 
and Chongqing regions [1]. Liang et al. used  DEA Models to measure the Efficiency of New Urbanization and 
Logistics Industry in Three Provinces and One City in the Yangtze River Delta Region [2]. Tang measured the 
Circulation Efficiency of the Distribution Industry in 30 Provinces, Regions and Municipalities in China with 
DEA-Malmquist Indexes [3]. Liu analyzed the financing efficiency of listed companies in the textile industry with 
the SBM-Malmquist index model [4].

Regarding the object of green technology innovation efficiency measurement, scholars mostly focus on the 
regional, industry and enterprise levels. At the regional level, many scholars have measured the green technology 
efficiency value of industrial enterprises in 30 provinces in China [5-8]. Yuan and Dong evaluated the industrial 
green technology innovation efficiency of the provinces in the Yellow River Basin by using the super-efficiency 
EBM model, and explored the sources of regional efficiency differences through the Dagum Gini coefficient [9]. 
Huang et al. used a two-stage global network SBM-DEA model to measure the efficiency of green technology 
innovation in agriculture [10]. Cao and Su used the super-efficient SBM-DEA model to measure the efficiency 
of green technology innovation in 30 provinces in China [11]. Hou used the super-efficient SBM-DEA model to 
measure the innovation efficiency of green transportation technology in 16 cities of Chengdu-Chongqing city 
cluster from 2001 to 2020 [12]. At the industry level, Yu et al. measured the technological innovation efficiency 
of high-tech industries by using a non-radial SBM model [13]. Chen measured the green technology innovation 
efficiency of China’s manufacturing industry by using the super-efficiency SBM model, and categorized it into 
three categories based on the change trend [14]. At the enterprise level, Lv and Ma measured the green technology 
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innovation efficiency by using the SFA method based on a sample of 801 observations from A-share listed 
industrial enterprises in China [15]. Wang et al. measured the green technology innovation efficiency of new 
energy enterprises with the SBM model [16]. Zou used a three-stage DEA model to measure the green technology 
innovation efficiency of industrial listed companies in Shanghai and Shenzhen main boards [17].

In the study of influencing factors, Fang found that factors such as environmental regulation, external 
technology, and industry scale are the key factors affecting the efficiency of green technological innovation in 
China’s heavily polluted industries, among which the impact of over-reliance on external technology and policy 
uncertainty on industrial green technological innovation is negative [18]. He and Cai found that the level of green 
economy development, government support, enterprise revenue, and foreign investment positively affect the 
efficiency of green technology innovation of industrial enterprises in 27 cities in the Yangtze River Delta [19]. Yan 
et al. found that the degree of openness to the outside world, science and technology innovation environment 
has a significant positive impact on the efficiency of industrial green technology innovation in 11 provinces and 
municipalities of the Yangtze River Economic Belt, the industrial structure has a significant negative impact on the 
efficiency, the dependence on foreign investment, the market competition environment also has a negative impact 
on the efficiency, but not significant [20].

The existing literature on the efficiency of green technology innovation is also rich, but there is still much 
room for expansion as follows:  

(1)	 In terms of research methodology, the EBM mixed distance function model is used to make up for the 
shortcomings of the radial and non-radial models in the measurement of input-output variables; 

(2)	 Focusing on the spatial imbalance of green technology innovation efficiency, the Dagum Gini coefficient 
is utilized to reveal the source of regional efficiency differences and to solve the problem of cross overlap 
between groups; 

(3)	 From a research perspective, spatial econometric models are employed to analyze the impact of various 
factors on pure green technological innovation at different stages to provide a reference for innovation-
driven and green transformation policies. 

Based on this, the article uses inter-provincial panel data from 2005–2022 to measure, decompose, analyze 
the sources of differences and influencing factors of efficiency in stages by constructing the super-efficiency EBM 
model, ML index model, Dagum coefficient model, and spatial Durbin model, its research value can be explored 
from both theoretical and practical perspectives. Theoretically, this multi-model integrated analytical framework 
enriches the quantitative research methodology within the field. Moreover, by precisely identifying key efficiency 
determinants using long-term inter-provincial data, it provides new empirical evidence for green technological 
innovation efficiency studies. Practically, the findings offer actionable pathways for industrial enterprises to 
advance green transformation through existing technological innovation. They also furnish robust empirical 
support for policymakers seeking to optimize regional green innovation resource allocation and facilitate industrial 
upgrading.

This paper is structured into five sections following a logical sequence of “background-methodology-
analysis-conclusions” as listed: 

(1)	 The introduction clarifies the research significance, reviews existing findings, and delineates the 
innovative direction; 

(2)	 It details the research methodology, indicator system, and data processing; 
(3)	 It measures efficiency across R&D and transformation stages, analyzing efficiency variations and regional 
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disparities;
(4)	 It examines influencing factors through regression, robustness, and heterogeneity analyses;
(5)	 It summarizes conclusions and proposes policy recommendations.

2. Research methods and data processing
2.1.Research methodology

2.1.1.Super-efficient EBM model
The article measures efficiency using a super-efficient EBM model with Equation (1).

	 (1)

Where k* is the optimal efficiency value,  are the input element, expected 
outputs, weights for non-expected outputs, non-zero relaxation measures and indicators, respectively; θ is the 
radial conditional efficiency values; η is the output expansion ratio; ε is key parameters, indicating the degree of 
combination of radial and non-radial, the value range is 0~1.

2.1.2. Dagum Gini coefficient model
The Dagum Gini coefficient is used to measure the degree of geospatial imbalance [21]. The formulas for total Gini 
coefficient (G), intra-group Gini coefficient (Gjj), inter-group Gini coefficient (Gjh), intra-group contribution (Gw), 
inter-group contribution (Gnb) and hypervariable density contribution (Gt) are as follows:

	 (2)

  (3)

Where (n,k) represent the number of provinces and regions that is studied;  are the 
level of efficiency of i(r) industrial firms in each province, within j(h) region and j(h) region. 

 represents the relative impact between regions.
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2.1.3. Malmquist-Luenberger exponential model
The Malmquist-Luenberger productivity index model is able to decompose the efficiency change into two 
components, technical progress and efficiency improvement, as follows [22]:

(4)

Where  represents the generalized distance function that takes into account the non-expected 
output of bt,(xt,yt) is the vector of inputs and the vector of desired outputs in period t. When there is no non-desired 
output, i.e., when bt = bt+1 = 0, the ML index degenerates into the M index. EC refers to the index of change in 
technical efficiency, and TC refers to the index of change in technical progress.

2.2. Selection of indicators and data sources
2.2.1. Selection of indicators
As shown in Table 1, carbon dioxide and the environmental pollution index of “three industrial wastes” calculated 
by entropy value method are used as non-expected outputs to measure the green technology innovation efficiency 
of industrial enterprises and then analyzed and researched. For the robustness test, the four pollutants are re-
measured and empirically analyzed for efficiency as non-expected outputs.

Table 1. Green technology innovation efficiency index system of industrial enterprises

Phase Indicator type Indicator name Indicator unit

Technology 
development 

phase

Input RD personnel (Person)

RD expenditure RD internal expenditure stock (RMB 10,000)

New product development expenditure New product development expenditure balance (RMB 10,000)

Total costs for technology introduction, 
etc.

Total accumulated expenses for technology introduction, etc. 
(RMB 10,000)

Intermediate input Number of patent applications Piece

Number of valid invention patents Piece

New product development project Item

Results 
conversion 

phase

Energy input Total energy consumption 10,000 tons of standard coal

Expected output New product sales revenue Deflated by the industrial producer price index (10,000 yuan)

Unexpected 
output

Industrial wastewater 10,000 tons

Industrial sulfur dioxide 10,000 tons

Industrial solid waste generation 10,000 tons

Industrial carbon dioxide 10,000 tons

Industrial waste pollution index -
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2.2.2. Data sources
The article utilizes panel data from 30 provinces and cities outside of Hong Kong, Macao, Taiwan, and Tibet of 
China’s state-owned industrial enterprises from 2005–2022 to develop the analysis. The data for the article are 
mainly from the EPS data platform, China Science and Technology Statistical Yearbook, China Environmental 
Statistical Yearbook, China Statistical Yearbook, China Carbon Accounting Database, National Bureau of Statistics 
and provincial statistical yearbooks.

In order to eliminate the effect of inflation and the cumulative effect of the funds, the funds are deflated by 
the research and development price index for the base period of 2005 and then calculated by using the perpetual 
inventory method. The methodology for the R&D price index is: R&D price index = 0.55*consumer price index 
+ 0.45*fixed asset investment price index. The perpetual inventory method calculates the stock as follows: 
Kit = (1 - δ)Kit-1+Iit. Where KitKit-1 are the capital stock of province i in year t and t-1, respectively. δ denotes the 
capital depreciation rate, which is set to be 20.8%, and Iit denotes the actual internal expenditure of funds in 
province i in year t. According to the formula: Ki0 = Ii0/(g + δ) calculating the capital stock in the base period [23–26].

3. Measuring and analyzing green technology innovation efficiency of Chinese 
industrial enterprises
3.1. Measuring the efficiency of green technology innovation
Based on the index system constructed in the previous article, the article uses IDEA Ultra software to measure the 
green technology innovation efficiency of industrial enterprises in each province of China from 2005 to 2022.

3.1.1. Analysis of technological innovation efficiency in the R&D stage
As shown in Table 2, the average values of total green technology R&D efficiency, pure green technology R&D 
efficiency and scale efficiency of industrial enterprises are 0.848, 0.920 and 0.922 respectively. At the provincial 
level, seven of the top ten rankings for total technology R&D efficiency are in the east, two in the center, and one 
in the west. Among the ten provinces and cities ranked lower, six are in the west, two in the northeast, one in the 
center, and one in the east, indicating the spatial imbalance in the efficiency of green technology R&D in various 
regions of China. Scale efficiency is low in Guizhou, Gansu, Qinghai, Ningxia, Xinjiang and Hainan, especially 
in Qinghai and Hainan. The pure technology R&D efficiency levels in Hainan and Qinghai are 1.002 and 0.926 
respectively, but the corresponding scale efficiencies are 0.798 and 0.773 respectively, with a serious mismatch 
between pure technology R&D efficiency and scale efficiency. Hainan, due to its relatively remote geographical 
location, making enterprises face certain difficulties in the expansion of off-island markets, to a certain extent, 
constraints on the scale of the efficiency of technology research and development in Hainan. 

In addition, the relatively late start of Hainan’s industry and the insufficient capacity of the industrial system 
and industrial support will also make it impossible to realize the economies of scale of technological research and 
development through large-scale industrialization. At the regional level, the technical efficiency of East continues 
to have the highest level. In terms of longitudinal evolutionary trends,  all regions showed a more pronounced and 
consistent upward trend in technology R&D efficiency over the study period, as shown in Figure 1.
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Table 2. Green technology R&D innovation efficiency of industrial enterprises

Province Efficiency of scale Pure technical R&D efficiency Overall technical R&D efficiency Ranking

Beijing 0.952 0.956 0.911 3

Tianjin 0.947 0.945 0.894 7

Hebei 0.935 0.901 0.843 17

Shanghai 0.977 0.923 0.902 6

Jiangsu 0.974 0.934 0.91 4

Zhejiang 0.968 0.948 0.918 2

Fujian 0.94 0.905 0.852 14

Shandong 0.969 0.921 0.893 8

Guangdong 0.968 0.982 0.951 1

Hainan 0.798 1.002 0.798 24

Shanxi 0.914 0.87 0.797 25

Anhui 0.941 0.959 0.903 5

Jiangxi 0.925 0.9 0.834 20

Henan 0.931 0.913 0.851 16

Hubei 0.938 0.92 0.864 12

Hunan 0.927 0.937 0.87 10

Liaoning 0.961 0.887 0.853 13

Jilin 0.941 0.865 0.816 23

Heilongjiang 0.914 0.901 0.825 22

Inner Mongolia 0.893 0.857 0.767 29

Guangxi 0.928 0.899 0.835 19

Chongqing 0.943 0.917 0.866 11

Sichuan 0.929 0.956 0.888 9

Guizhou 0.886 0.948 0.841 18

Yunnan 0.898 0.923 0.829 21

Shanxi 0.924 0.922 0.852 15

Gansu 0.882 0.903 0.795 26

Qinghai 0.773 0.926 0.715 30

Ningxia 0.842 0.939 0.79 27

Xinjiang 0.874 0.899 0.785 28

Eastern Region 0.943 0.942 0.887

Central region 0.929 0.917 0.853

Western Region 0.888 0.917 0.815

Northeast Region 0.939 0.884 0.831

National level 0.920 0.922 0.848
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Figure 1. Trends in technology R&D efficiency by region. 

3.1.2. Analysis of the efficiency of technological innovation at the transformation stage
As shown in Table 3, the average values of technology conversion efficiency, pure technology conversion 
efficiency and scale efficiency are 0.689, 0.752 and 0.920 respectively. The conversion efficiency is much 
lower than the efficiency of technology research and development, mainly caused by the low efficiency of pure 
technology conversion, and the value of conversion efficiency in each region from east to west shows a decreasing 
trend. At the provincial level, in the top ten regions ranked in terms of technology transformation efficiency, only 
the east accounted for eight, with the remaining two being Jilin Province in the northeast and Chongqing in the 
west, and among the bottom ten regions, the west accounted for eight, with the other two being Shanxi in the 
center and Heilongjiang in the northeast. The eastern part of the country continues to have significant advantages 
in technology transformation, but among them, Shanghai, Jiangsu, Zhejiang, Shandong and Guangdong are the 
five lowest ranked regions in terms of scale efficiency, which may be due to the fact that the eastern part of the 
country is rich in innovation resources, such as talents, scientific research institutes, and outstanding enterprises, 
which makes the resources dispersed. 

In addition, the diversified and individualized market demands in developed regions make it difficult to 
achieve large-scale standardized production for technology transformation. At the regional level, the scale 
efficiencies of the central, western and northeastern regions are equal and slightly higher than those of the eastern 
region, but the pure technical transformation efficiencies of all three are significantly lower than those of the 
eastern region, with the largest difference between the pure technical transformation efficiencies of the eastern 
region and those of the western region. Compared with the eastern region, the western region’s degree of opening 
up to the outside world, market development are relatively weak, information is relatively closed, access to cutting-
edge technology and market information channels are limited, and there are few opportunities for international 
cooperation and exchanges, which hinders the transformation of technology. 

The longitudinal evolution trend shows that the conversion efficiency in the eastern region remains high and 
oscillating, much higher than in the other regions, as shown in Figure 2. As of 2022, the Northeast’s technology 
conversion efficiency has bounced back to exceed the national average and even surpassed that of the Central 
region. In recent years, Northeast China has accelerated the transformation of traditional industries into high-end, 
intelligent and green industries, and built growth points around strategic emerging industries, which provides a 
broad application prospect for technology transformation. 
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Table 3. Green technology transformation and innovation efficiency of industrial enterprises

Province Efficiency of scale Pure technical R&D efficiency Overall technical R&D efficiency Ranking

Beijing 0.94 0.874 0.822 1

Tianjin 0.905 0.897 0.811 3

Hebei 0.917 0.716 0.657 20

Shanghai 0.868 0.941 0.816 2

Jiangsu 0.891 0.863 0.768 7

Zhejiang 0.882 0.885 0.779 5

Fujian 0.929 0.804 0.748 10

Shandong 0.883 0.821 0.725 11

Guangdong 0.861 0.881 0.755 9

Hainan 0.934 0.841 0.781 4

Shanxi 0.94 0.660 0.621 22

Anhui 0.936 0.769 0.72 12

Jiangxi 0.937 0.750 0.7 15

Henan 0.922 0.734 0.677 17

Hubei 0.917 0.774 0.71 13

Hunan 0.918 0.772 0.708 14

Liaoning 0.917 0.745 0.684 16

Jilin 0.918 0.849 0.778 6

Heilongjiang 0.938 0.651 0.608 24

Inner Mongolia 0.931 0.662 0.614 23

Guangxi 0.946 0.711 0.672 18

Chongqing 0.922 0.823 0.76 8

Sichuan 0.927 0.716 0.665 19

Guizhou 0.952 0.607 0.577 28

Yunnan 0.951 0.631 0.600 25

Shanxi 0.95 0.666 0.633 21

Gansu 0.935 0.642 0.594 26

Qinghai 0.857 0.66 0.561 29

Ningxia 0.937 0.629 0.585 27

Xinjiang 0.93 0.579 0.536 30

Eastern Region 0.901 0.852 0.766

Central region 0.928 0.743 0.689

Western Region 0.931 0.666 0.618

Northeast Region 0.925 0.748 0.690

National level 0.920 0.752 0.689
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Figure 2. Trends in technology transfer efficiency by region.

3.2. Malmquist-Luenberger index analysis
The efficiency level was measured and analyzed in the previous section, and the ML index in this section is able to 
decompose the efficiency change into two parts: technological progress and efficiency improvement, which helps to 
clarify whether the increase in the efficiency of green technological innovation is originated from the improvement 
of the technological level or the improvement of the efficiency of resource utilization and other efficiency in the 
production process, so as to analyze the intrinsic mechanism of the efficiency change in a more in-depth manner.

3.2.1. Malmquist-Luenberger index analysis of the R&D phase
As shown in Figure 3, the ML index and technical progress index of the 30 provinces in the R&D stage are all 
greater than 1, and the efficiency change index and technical progress index are all distributed below the ML 
index, indicating that the relationship between technical efficiency and technical progress is coordinated in all 
regions in the R&D stage, and the overall development of China’s green technology R&D efficiency is good.
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Figure 3. ML index decomposition of technology R&D efficiency in each province.

3.2.2. Dynamic analysis of the Malmquist-Luenberger index at the transformation stage
As shown in Figure 4, there are 18 provinces with ML indexes less than 1 at the transformation stage, of which 13 
provinces, including Hebei, Fujian, Shanxi, and Jiangxi, are caused by the technical regression index less than 1. 
Hainan is caused by the technical efficiency index less than 1, mainly caused by the decline of technical efficiency, 
and Tianjin, Shanghai, and Jilin are caused by both the technical efficiency index and the technical progress index less 
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than 1, caused by the combination of technological regression and the decline of technical efficiency. The technical 
efficiency index is higher than the technical progress index in most regions, and the gap between the technical 
efficiency index and the technical progress index is more significant in the central, western and northeastern regions.
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Figure 4. ML index decomposition of the efficiency of technological transformation in each province. 

3.3. Decomposition of regional differences in green technology innovation efficiency
This section calculates and decomposes the regional differences in green technology innovation efficiency, R&D 
efficiency and transformation efficiency of industrial enterprises in 30 provinces of China from 2005 to 2022 by 
applying the Dagum Gini coefficient decomposition method through stata software.

3.3.1. Decomposition of regional differences in green technology R&D efficiency
As shown in Table 4, the total Gini coefficient shows a decreasing trend, which is from 0.053 to 0.023, and 
the efficiency differences within and between regions also show a decreasing trend, The degree of spatial 
differentiation of efficiency within the four regions is West > East > Center > Northeast, and differences in 
efficiency are the greatest between the eastern and western regions. The average contribution of interregional 
efficiency differences in the R&D phase (57.278%) remains much larger than the average contribution of 
intraregional differences (23.722%) and the average contribution of hypervariable density differences (19.002%).

Table 4. Gini coefficient and decomposition of green technology R&D efficiency in industrial enterprises

Year Gini coefficient
Contribution

Gw Gnb Gt

2005 0.053 25.525 43.880 30.637

2006 0.060 25.830 31.533 42.637

2007 0.054 25.327 43.591 31.082

2008 0.044 24.434 50.710 24.856

2009 0.042 24.469 56.166 19.365

2010 0.045 24.658 57.574 17.768

2011 0.043 24.319 61.309 14.372

2012 0.039 24.659 59.631 15.709
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Table 4 (Continued)

Year Gini coefficient
Contribution

Gw Gnb Gt

2013 0.035 24.529 60.331 15.140

2014 0.037 24.064 57.799 18.137

2015 0.036 24.445 55.685 19.870

2016 0.033 23.819 57.277 18.904

2017 0.029 23.024 58.883 18.093

2018 0.026 23.100 60.437 16.463

2019 0.024 22.827 65.667 11.505

2020 0.021 21.872 68.249 9.880

2021 0.023 20.581 71.277 8.142

2022 0.023 19.519 71.007 9.474

Mean 0.037 23.722 57.278 19.002

3.3.2. Decomposition of regional differences in green technology transfer efficiency
As shown in Table 5, the average value of the total Gini coefficient, the average value of the Gini coefficient within 
each region and the average value of the Gini coefficient between regions are significantly larger in the technology 
transformation stage than in the R&D stage. The degree of spatial differentiation within each region is presented as 
Northeast > West > East > Center. The differences in the efficiency of technology transfer are the largest between the 
East and the West. Differences in conversion efficiency mainly come from inter-region, and the average contribution 
of inter-regional differences to the total differences even reaches 64.773%, which is much higher than the average 
contribution of intra-region (20.335%) and the average contribution of hypervariable density (14.897%).

Table 5. Gini coefficient and decomposition of green technology transformation efficiency of industrial enterprises

Year Gini coefficient
Contribution

Gw Gnb Gt

2005 0.113 18.115 75.064 6.821

2006 0.097 20.636 66.422 12.942

2007 0.083 20.406 69.856 9.738

2008 0.076 16.940 71.101 11.958

2009 0.066 22.808 48.829 28.363

2010 0.079 17.691 70.058 12.251

2011 0.073 21.730 61.050 17.220

2012 0.070 22.278 60.068 17.653

2013 0.074 18.214 74.593 7.193

2014 0.074 19.292 70.471 10.237

2015 0.078 18.946 66.460 14.594
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Table 5 (Continued)

Year Gini coefficient
Contribution

Gw Gnb Gt

2016 0.071 21.110 61.037 17.853

2017 0.067 20.830 58.156 21.105

2018 0.060 24.855 58.646 16.499

2019 0.095 16.817 74.702 8.481

2020 0.064 22.674 57.723 19.603

2021 0.075 23.456 57.925 18.619

2022 0.077 19.234 63.744 17.022

Mean 0.077 20.335 64.773 14.897

4. Research on the influencing factors of green technology innovation efficiency of 
Chinese industrial enterprises
4.1. Variable selection
The government is the one who formulates and implements environmental protection policies, green development 
strategies and technical standards, the enterprise is the direct implementer of green technological innovation, and 
the market is an important testing ground for green technological innovation, and the three constitute a dynamic 
innovation ecosystem. Therefore, this paper researches the influencing factors of pure green technology innovation 
efficiency of industrial enterprises from these three aspects, and the specific indicators selected are shown in Table 6.

Table 6. Impact factors and their measurement indicators

Symbol Variable Variable measure Unit

RDPI Human resource 
investment

The ratio of personnel in R&D institutions of large-scale industrial enterprises 
to the number of R&D institutions in large-scale industrial enterprises

person/
individual

RDI Research and 
development expenditure

The proportion of internal expenditure on R&D funding above the specified 
standard in total industrial output value %

SC Company size The ratio of total assets of large-scale industrial enterprises to the number of 
large-scale industrial enterprises

Ten thousand 
yuan per unit

GOV Government support Proportion of government funds in internal R&D expenditure of industrial 
enterprises above designated size %

ST Degree of nationalization Main business income of state-owned and state-controlled industrial enterprises 
/ Main business income of large-scale industrial enterprises within the region %

ER Environmental 
Regulation Industrial pollution control investment as a percentage of GDP %

MC Market competitiveness Number of industrial enterprises above designated size Take the logarithm Individual

RDC R&D competitiveness Number of large-scale industrial enterprises with R&D institutions / Number of 
large-scale industrial enterprises with R&D activities %

FDI Foreign investment Foreign direct investment as a percentage of GDP %
IS Industrial structure Secondary industry GDP as a percentage of GDP %

EL Level of education The proportion of undergraduate students enrolled in regular higher education 
institutions relative to the region’s permanent resident population at year-end %
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4.2. Model construction
The general form of the Spatial Durbin Model (SDM) is as follows:

yit = α + ρWijyit + βxit + λWijxit + μi + vt + wit	 (5)

Where α is constant term , (ρ,λ) are the spatial lag term coefficients, β is the coefficient of the explanatory 
variable, Wij is spatial weighting matrix, the text refers to the spatial geographic distance square matrix and the 
spatial geographic distance matrix, (ρWijyit,λWijxit) represent the spatial lag term of the explained and explanatory 
variables, (μi,vt,wit) represent the individual, time fixed effects, and error terms, respectively.

4.3. Model checking
As shown in Table 7, the Moran’s index test is significant at the 10% level, indicating that the non-spatial panel 
model regression results are not sufficiently reflective of the true state of the economy. The p-value of SEM test, 
robust SEM test, SAR test, and robust SAR test in the LM test is less than 0.1, indicating that both models are 
applicable. The LR model test p-value is less than 0.1 and the spatial Durbin model outperforms the spatial error 
model and the spatial lag model. Furthermore, the P-value in the LR time-individual fixed effects test was less 
than 0.1, and it was more reasonable to choose two-way fixed effects. The p-value in the Wald test is less than 0.1, 
confirming that the spatial Durbin model does not degenerate into a spatial lag and spatial error model.

Table 7. Green technology innovation efficiency spatial measurement model selection test

Spatial model testing
Research and development phase Transformation stage

Value P-Value Value P-Value

Moran’s I 6.748 0.000 6.640 0.000

Lagrange multiplier 39.870 0.000 38.552 0.000

Robust Lagrange multiplier 10.910 0.001 12.700 0.000

Lagrange multiplier 82.640 0.000 26.252 0.000

Robust Lagrange multiplier 53.680 0.000 0.400 0.527

LR=SDM/SAR 88.480 0.000 41.29 0.000

LR=SDM/SEM 88.680 0.000 38.77 0.000

LR-both/time 62.190 0.000 253.51 0.000

LR-both/ind 378.640 0.000 48.71 0.000

Wald-SDM/SAR 153.610 0.000 26.53 0.005

Wald-SDM/SEM 164.720 0.000 26.85 0.005

4.4. Regression analysis
Through the above model test, the article used the spatial Durbin model with double fixed effects to analyze the 
various factors affecting the efficiency of green pure technological innovation of industrial enterprises in China, 
and the results are shown in Table 8.

The coefficients of human resource input (RDPI) at the stage of technology R&D and W*RDPI are 0.092 
and 0.220, respectively, and both are significant at the 5% test level, indicating that the input of human resources 
at the stage of technology R&D not only promotes technology R&D in the region, but also promotes technology 
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R&D in neighboring regions. At the stage of technological transformation, the input of human resources has a 
non-significant facilitating effect on the region, but a very significant inhibiting effect on neighboring regions. The 
investment of human resources in the region may lead to the gathering of talents, promote knowledge sharing and 
cooperation, optimize resource allocation, and make technological innovation and transformation more efficient. 
Human resource inputs from neighboring regions often compete with resource allocations in their own regions, 
which may lead to brain drain and competition for resources, thereby inhibiting the efficiency of neighboring 
regions. While human resource investment in the region improves technological R&D and innovation capabilities, 
this knowledge and experience tends to spill over to neighboring regions through channels such as cooperation, 
exchanges, and industry conferences, leading to technological R&D and innovation in neighboring regions. 

R&D capital investment (RDI) has an inhibitory effect on technological R&D in the region at the R&D stage, 
but has a significant role in promoting technological R&D in neighboring regions at the 1% test level. Local R&D 
funding may inhibit local technological R&D due to allocation imbalance and path dependence, while at the same 
time positively promoting technological R&D in neighboring regions due to the local innovation environment 
that attracts attention and cooperation from them. The promotion effect of R&D capital investment on technology 
transformation in the region and the inhibition effect on technology transformation in neighboring regions are not 
obvious at the transformation stage.

The coefficient of firm size (SC) in the R&D stage is -0.144, which is significant at the 5% test level, 
indicating that firm size has a significant inhibitory effect on the efficiency of technological research and 
development, while the effect of firm size on the efficiency of technological transformation is not significant. 
Large firms have a certain dominant position in the market by virtue of their existing technological advantages 
and product lines, which may lead to a weakening of competitive pressures in the industry, and lack pressure in 
innovation. Enterprise size has a significant inhibitory effect on the efficiency of both technological R&D and 
technological transformation in neighboring regions, and this inhibitory effect suggests that in the process of 
enterprise development due to the monopoly effect of the market, restricted technological diffusion, or competition 
for talents, the development of local enterprises will have a weakening effect on the development of enterprises in 
neighboring regions.

The effect of government support (GOV) on technology R&D efficiency and technology transfer efficiency 
is insignificant and it is significant at 5% level for neighboring regions. Due to the cooperation synergy effect, 
enterprises in neighboring regions are more likely to form cooperation with enterprises in their own regions and 
take advantage of their own technological resources, government support, etc. to realize the improvement of the 
efficiency of technological research and development and technological transformation.

The degree of nationalization (ST) and the efficiency of technological R&D and technological transformation 
are significant at the 1% and 5% levels with coefficients of 0.209 and 0.480, respectively. The degree of 
nationalization inhibits the level of technological innovation efficiency and the efficiency of technological research 
and development of industrial firms in neighboring regions. Although there are some long-term institutional 
barriers to state-owned enterprises, state-owned enterprises have a large number of key laboratories, technology 
centers, talent centers, etc., which still play a leading role in innovation.

The coefficients of environmental regulation (ER) at different stages are -0.098, -0.091 and are significant at 
1%, 1% and 5% test levels, respectively, indicating that environmental regulation has a significant inhibitory effect 
on the efficiency of both the R&D stage and the transformation stage. Environmental regulation has a negative 
spillover effect, and it has a significant inhibitory effect on the efficiency of technology R&D in neighboring 
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regions and a non-significant effect on the promotion of transformation efficiency in neighboring regions. It 
can be seen that environmental regulation mainly manifests in increasing compliance costs for firms, which can 
have a depressing effect on the development and transformation of technology. In addition, strict environmental 
regulatory policies in the province and city will force enterprises with high pollution levels and more difficult 
transformation and upgrading to move their industries to neighboring provinces and cities where environmental 
control is easier, adding to the pressure of local environmental pollution.

The relationship between the degree of market competition (MC) and the efficiency of technological 
development is not significant, and the relationship with the efficiency of technological transformation is 
significant at the 1% level with coefficients of 0.200 and 0.169, respectively. The coefficients of W*MC for the 
R&D stage and the technology conversion stage are -2.354 and -1.499, respectively, and both are significant at the 
1% test level. The degree of competition in the market can motivate firms to continuously improve the efficiency 
of technological transformation, neighboring regions may inhibit technological R&D and transformation due to 
over-concentration of resources or shifting of competitive pressures.

R&D competitiveness (RDC) has a significant positive contribution to technology R&D efficiency with a 
coefficient of 0.073 and the coefficient is significant at 5% level, while R&D Competitiveness and the technology 
transformation efficiency are insignificant. There is a positive spatial spillover effect of local competitiveness 
in technology R&D, but the effect on the efficiency of technology R&D and technology transformation in 
neighboring regions is not significant, with coefficients of -0.156 and -0.051, respectively.

Foreign investment (FDI) does not play a significant role in the region’s technology R&D and technology 
transformation efficiency, but the coefficient of FDI and technology transformation efficiency is 0.246, which 
is significant at the 10% level, indicating that the technology and management model of foreign enterprises can 
positively influence neighboring regions through the relationship of human capital flow and supply chain.

The coefficients of industrial structure (IS) in the R&D and transformation stages are 0.235 and 0.133 
respectively, and are significant at the 5% and 1% levels, indicating that an increase in the share of value added 
of the secondary industry in GDP can promote the efficiency of technological research and development and 
the efficiency of technological transformation. The rapid development of the secondary industry often requires 
technological advances and innovations to enhance competitiveness, prompting firms to engage in green 
technological innovations to meet regulatory and market requirements for the environment. This demand drives 
the rapid development of green technologies. IS can have a positive spillover effect, significantly contributing to 
technology development and technology transformation in neighboring regions.

The coefficient of education level (EL) at the R&D stage is 0.259 significant at the 1% level, and the 
coefficient of W*EL is not significant, indicating that the development of education in the region can effectively 
lead to the improvement of the quality of workers in the region. The coefficient of EL at the stage of transformation is 
-0.499, which is significant at the 1% level, and the coefficient of W*EL is -0.027, which has a non-significant 
effect, and the level of education has an inhibitory effect on the efficiency of technological transformation in the 
region and neighboring regions. Highly educated R&D personnel may be more inclined to theoretical innovation 
research, neglecting practical application transformation, commercial application transformation thus inhibiting 
the efficiency of technology transformation.
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Table 8. Spatial Durbin regression results

Variable name
PTEC1 PTEC2

Main Wx Main Wx

RDPI 0.092**
-2.116

0.220**
-2.236

0.031
-0.682

-0.271***
-2.596

RDI -0.117
-1.449

0.600***
-3.138

0.130
-1.531

-0.172
-0.856

SC -0.144**
-2.075

-0.667***
-4.662

0.008
-0.113

-0.293*
-1.956

GOV 0.012
-0.32

0.217**
-2.334

-0.006
-0.151

-0.215**
-2.198

ST 0.209**
-2.234

-0.875***
-4.111

0.480***
-4.874

0.081
-0.356

ER -0.098***
-2.840

-0.352***
-3.466

-0.091**
-2.498

0.085
-0.799

MC 0.200
-0.918

-2.354***
-4.980

1.690***
-7.376

-1.499***
-2.946

RDC 0.073**
-2.237

-0.156
-1.495

0.024
-0.683

-0.051
-0.464

FDI 0.047
-0.952

0.109
-0.911

0.010
-0.191

0.246*
-1.946

IS 0.235***
-4.141

0.113
-0.893

0.133**
-2.201

0.492***
-3.796

EL 0.259**
-2.157

-0.088
-0.287

-0.499***
-3.940

-0.027
-0.082

4.5. Robustness analysis
The article adopts two methods to conduct robustness tests on the pure efficiency values of the R&D stage and the 
transformation stage respectively to ensure the credibility of the empirical results, as shown in Table 9. The two 
methods are as follows: 

(1)	 Replacing weights: The previous article used a spatial geographic distance square matrix for the empirical 
study, this article replaces the matrix with a spatial geographic distance matrix for the empirical study 
again and finds that the sign and significance of the data remain consistent, indicating that the results are 
robust; 

(2)	 Replacing measures of efficiency: In the previous paper, the environmental pollution indexes of industrial 
carbon dioxide and “industrial three wastes” were used as non-expected outputs in the efficiency 
measurement, but here the non-expected outputs are replaced by “industrial three wastes” and industrial 
pollution to conduct empirical analysis after re-measuring the efficiency, and it is found that the sign and 
significance of the data are still the same as that of the data and the results are robust.
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Table 9. Robustness test of pure green technology innovation efficiency

Variable 
name

Research and development phase Transformation stage

Replace weights Replacing measures of efficiency Replace weights Replacing measures of efficiency

Main Wx Main Wx Main Wx Main Wx

RDPI 0.083*
-1.912

0.622**
-2.442

0.092**
-2.116

0.220**
-2.236

0.014
-0.299

-0.544**
-1.963

0.044
-1.051

-0.232**
-2.414

RDI -0.069
-0.878

2.396***
-4.793

-0.117
-1.449

0.600***
-3.138

0.103
-1.199

-0.088
-0.163

0.087
-1.112

-0.069
-0.373

SC -0.170**
-2.520

-1.515***
-4.063

-0.144**
-2.075

-0.667***
-4.662

-0.015
-0.200

-0.766*
-1.893

-0.026
-0.386

-0.225
-1.633

GOV 0.011
-0.29

0.731***
-2.859

0.012
-0.32

0.217**
-2.334

-0.019
-0.438

-0.547**
-1.984

-0.006
-0.149

-0.163*
-1.810

ST 0.193**
-2.086

-2.151***
-3.759

0.209**
-2.234

-0.875***
-4.111

0.502***
-5.013

0.507
-0.814

0.452***
-4.986

0.072
-0.348

ER -0.114***
-3.264

-1.041***
-4.117

-0.098***
-2.840

-0.352***
-3.466

-0.080**
-2.114

0.236
-0.865

-0.085**
-2.530

-0.014
-0.145

MC 0.116
-0.55

-5.428***
-4.617

0.200
-0.918

-2.354***
-4.980

1.549***
-6.775

-3.201**
-2.481

1.507***
-7.156

-1.425***
-3.059

RDC 0.018
-0.527

-1.150***
-3.869

0.073**
-2.237

-0.156
-1.495

0.017
-0.466

-0.128
-0.397

0.010
-0.315

-0.093
-0.915

FDI 0.085*
-1.674

0.191
-0.563

0.047
-0.952

0.109
-0.911

0.048
-0.865

0.832**
-2.257

0.066
-1.378

0.243**
-2.088

IS 0.238***
-4.214

0.482*
-1.66

0.235***
-4.141

0.113
-0.893

0.143**
-2.321

1.345***
-4.357

0.155***
-2.77

0.607***
-5.052

EL 0.270**
-2.274

-0.046
-0.051

0.259**
-2.157

-0.088
-0.287

-0.476***
-3.691

-0.074
-0.076

-0.367***
-3.146

-0.166
-0.557

4.6. Heterogeneity analysis
The 30 provinces in China were divided into four regions, East, Central, West and Northeast, and were empirically 
demonstrated with the spatial Durbin regression model respectively, and the analysis results are shown in Table 10. 

R&D personnel and industry structure in the eastern region contribute significantly to the efficiency 
of technological R&D, while firm size inhibits the efficiency of technological R&D at the 1% level. In the 
transformation phase, both R&D expenditure and industry structure contribute significantly to the level of 
efficiency. R&D expenditure, government support, and the degree of R&D competition in the central region are all 
unfavorable to the improvement of R&D efficiency, and the factors that play a significant role in contributing to 
the improvement are the degree of market competition and the level of education. The degree of R&D competition 
may lead to fragmentation of resources and manpower, hindering the efficiency of technology development. 
In contrast, none of the influencing factors at the transformation stage had a significant effect on the level of 
efficiency. Human resource investment and education level in the western region contribute significantly to the 
efficiency of technological R&D, and R&D expenditure and industrial structure play a significant inhibitory role. 

Government support, the degree of nationalization, and the degree of market competition can significantly 
promote the transformation of technology, while environmental regulations and the degree of R&D competition 
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can hinder the transformation of technological achievements. Environmental regulation requires firms to comply 
with relevant environmental standards, which often requires firms to consider issues such as the cost of pollution 
control associated with the use of technology, and may lead to relatively less transformation of innovations for 
commercialization. Foreign investment, education level, degree of nationalization and environmental regulation all 
have a significant effect on R&D efficiency in the Northeast at the 1% level, with the first two being promotional 
and the latter two being inhibitory. 

In the transformation stage, the investment of R&D personnel and the degree of R&D competition will 
inhibit the transformation of technological achievements, while the degree of nationalization, the degree of market 
competition and industrial restructuring will significantly promote the transformation of technology. Traditional 
industries in the northeast region account for a large proportion of the overall transformation and upgrading is 
slow, its slow economic development and high-quality talent loss make the overall quality of RD personnel to 
reduce, thus inhibiting the level of regional transformation efficiency level, and the improvement of the market 
environment can effectively promote the commercialization of technological achievements.

Table 10. Spatial heterogeneity regression results

Variable 
name

Eastern region Central region Western region Northeast region

PTEC1 PTEC2 PTEC1 PTEC2 PTEC1 PTEC2 PTEC1 PTEC2

RDPI
0.103* 0.235 0.086 0.154 0.183** 0.080 0.122 -0.787***

-1.749 -1.217 -1.259 -1.408 -2.181 -0.867 -1.125 -2.843

RDI
0.244 1.148*** -0.265** 0.003 -0.599*** 0.052 0.287 -0.623

-1.586 -3.479 -2.489 -0.017 -5.207 -0.408 -1.367 -1.192

SC
-0.499*** -0.305 -0.341 0.413 0.019 -0.022 -0.328 0.434

-3.661 -1.141 -1.623 -1.076 -0.099 -0.103 -0.736 -0.371

GOV
0.047 -0.006 -0.127** 0.023 0.053 0.194** -0.024 0.146

-1.035 -0.029 -2.452 -0.289 -0.665 -2.211 -0.362 -0.86

ST
-0.124 0.139 0.193 -0.048 0.206 0.366* -1.019*** 0.947**

-1.113 -0.292 -1.226 -0.15 -1.078 -1.741 -4.618 -2.034

ER
-0.054 -0.1 -0.026 0.195 -0.079 -0.115* -0.200*** 0.16

-1.159 -0.453 -0.364 -1.58 -1.306 -1.713 -2.752 -0.989

MC
0.25 -1.685 0.596** 0.531 -0.175 1.195*** -0.538 3.219**

-0.655 -0.949 -2.497 -1.645 -0.433 -2.672 -0.938 -2.148

RDC
-0.025 0.267 -0.176** -0.045 0.075 -0.368*** -0.176 -0.934***

-0.542 -0.993 -2.44 -0.411 -0.831 -3.737 -1.621 -3.162

FDI
-0.023 -0.272 -0.075 -0.025 -0.041 0.037 0.417*** 0.499

-0.342 -1.18 -1.134 -0.262 -0.505 -0.42 -3.191 -1.577

IS
0.451*** 2.358*** -0.093 -0.195 -0.286** -0.003 0.158 3.469***

-2.724 -4.941 -1.063 -0.836 -2.39 -0.025 -0.518 -4.333

EL
-0.421 -0.173 1.093*** -0.451 0.438** -0.098 1.301*** 0.634

-1.336 -0.174 -4.115 -0.959 -2.033 -0.412 -4.006 -0.83
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5. Conclusions and policy implications
The article used the panel data of 30 provinces and cities in China from 2005 to 2022 to measure, decompose 
and analyze regional differences in green technology R&D efficiency and transformation efficiency of industrial 
enterprises in China by using the super-efficiency EBM model, the ML index model and the Dagum Gini 
coefficient model, then the article analyzed the influencing factors of pure efficiency at each stage by using the 
spatial Durbin model, and robustness and heterogeneity analyses were also performed, the conclusions are as 
follows. 

Through the efficiency measurement and analysis, it is found that: 
(1)	Technology R&D efficiency > technology transformation efficiency, and the level of efficiency at each 

stage is directly proportional to the level of economic development of the region; Scale efficiency stabilized above 
0.9 at all stages, and low levels of pure efficiency contributed to low levels of total efficiency. 

In view of the fact that the efficiency of technology transformation is much lower than the efficiency of 
technology research and development, and there are bottlenecks in technological progress at the transformation 
stage, it is necessary to strengthen the collaborative research and development and innovation of industry-
university-research, and at the same time, to focus more on the breaking down of barriers to technological 
transformation. Through the establishment of “R&D-pilot-industrialization” whole chain docking mechanism, 
enterprises are encouraged to join colleges and universities, research institutes to form industrial innovation 
alliances, set up special funds for technology transformation, and focus on supporting the construction of 
pilot platforms in new quality productivity areas such as artificial intelligence, Internet of Things, and green 
manufacturing. Implementing the system of “revealing a list of commanders”, focusing on necklace technologies, 
such as high-end chips and industrial software, and improving the transformation efficiency through market-
oriented projects. Optimize the allocation of resources at the transformation stage and use digital tools (e.g., 
industrial Internet) to monitor the process of technology transformation in real time, reduce the mismatch of 
resources, and improve the efficiency of pure technology (e.g., management efficiency);

(2)	The level of efficiency in all phases tends to increase from 2005–2022, with the Eastern region 
having a higher level of efficiency in all phases than the other regions; China’s overall stage and R&D stage 
efficiency levels show good development, but there is insufficient coordination between technical efficiency and 
technological progress at the transformation stage, and there are significant bottlenecks in technological progress. 
Differences in the level of efficiency at each stage come mainly from differences in the level of efficiency between 
regions, with more pronounced differences between the eastern region and the other regions. 

Based on the fact that the efficiency level in the eastern region is much higher than that in other regions, i.e., 
the problem of imbalance in efficiency levels among regions, efforts should be made to promote the balanced 
development of regions. In the eastern region, relying on the advantages of R&D and transformation, focusing on 
the development of the “R&D headquarters + transformation base” model, exporting technological achievements 
to the central and western regions, and establishing a cross-regional benefit-sharing mechanism (e.g., technology 
shareholding, tax revenue sharing). Central, western and northeastern regions, undertake the transfer of technology 
from the east, build regional technology trading markets, and reduce the cost of transformation. Establishing an 
“Eastern-Western and Northeastern China Technology Transfer Fund” to support the transformation of research 
and development results from the east in the central, western, northern and eastern China; and establishing an 
“enclave economy” model, for example, by constructing industrial parks in the East in the Central and Western 
China, so as to achieve complementarity of resources. Promoting the twinning of city clusters such as Beijing-
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Tianjin-Hebei, the Yangtze River Delta, and the Guangdong-Hong Kong-Macao Greater Bay Area with central and 
western provinces to reduce regional disparities through the division of labor in industrial chains and the sharing 
of innovation resources.

Through analysis of influencing factors, it was found that at the national level, the degree of nationalization 
and industrial structure contribute significantly to the level of efficiency, environmental regulation plays a 
significant inhibitory role in the level of efficiency, and human resource investment, R&D competitiveness, and 
market competitiveness have a significant role in the efficiency of the R&D stage only, and the former two play a 
significant contributing role, while the latter plays an inhibitory role. The level of education plays a significant role in 
promoting the efficiency of the R&D stage and a significant inhibiting role in the efficiency of the transformation 
stage. 

Based on the results of the regression analysis, it is necessary to promote the transformation of state-owned 
enterprises into innovative subjects, encourage central enterprises and state-owned enterprises to take the lead in 
forming innovation consortiums, and give play to the positive effect of the degree of nationalization on efficiency 
through the introduction of market-based assessment mechanisms, such as the proportion of R&D investment and 
the effectiveness of the transformation of the linkage between the salary. We also need to pull industrial structural 
adjustment with new quality productivity, accelerate the deep integration of “intelligent manufacturing + industrial 
Internet”, such as guiding enterprises to use cloud computing and empowering them with intelligence, relying 
on low-cost SaaS platforms and intelligent decision-making systems to improve production and management 
efficiency, building a national industrial big data platform, promoting cross-regional and cross-industry data 
sharing, and narrowing the regional efficiency gap and reshape the pattern of industrial development with new 
quality productivity. Besides, formulating “industrial green technology innovation roadmap”, such as giving 
low-carbon technology research and development tax breaks, improving the carbon emissions trading market 
mechanism, turning environmental regulatory pressure into innovation momentum, forcing enterprises to upgrade 
technology is still an urgent task. In addition, Through the “New Quality Productivity Talent Special Program”, 
focusing on cultivating “R&D + Transformation” composite interdisciplinary talents, as well as lowering the 
threshold of entry, strengthening intellectual property protection and other ways to consolidate the foundation of 
applied talents and amplify the degree of competition in the market to promote efficiency is also very important.

At the level of regional heterogeneity, each influencing factor has a different effect on the level of efficiency 
at each stage in the East-Central-West and Northeast regions. Based on the results of the analysis of regional 
heterogeneity, it is necessary to optimize the allocation of regional resources and unleash new quality productivity 
dynamics. In the eastern region, we will continue to consolidate our advantages in human resources and industrial 
structure, and attract global innovation factors through the “talent + capital + technology” integration model. 

In the central region, direct government intervention should be reduced, and market vitality should be 
stimulated through the liberalization of industry access, the cultivation of specialized small and medium-sized 
enterprises, and other competitive policies that expand the autonomous decision-making power of enterprises. 
In response to problems such as inefficient utilization of R&D funds, a digital platform is used to fine-tune the 
management of funds and to regularly track the effectiveness of the use of funds. The western region should 
balance environmental regulation and efficiency improvement, develop green technologies such as photovoltaic, 
wind power and energy storage, and turn environmental pressure into low-carbon industrial advantages. The 
government can strengthen special subsidies and green finance to guide enterprises to adopt cleaner production 
technologies. Strengthening human resources development, implementing the “Western Talent Return Program”, 
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and relying on the Chengdu-Chongqing, Xi’an and other urban agglomerations to create a regional talent 
plateau. In the Northeast, foreign investment and cooperation should be expanded by taking advantage of 
geographic location, introducing advanced technology and management experience, and activating the dynamics 
of market competition. Optimizing the talent policy to curb the problem of “manpower loss”, such as through 
school-enterprise cooperation to train industrial workers, relying on the transformation of old industrial bases 
demonstration zones, to promote the deep integration of traditional industries and digital technology, such as steel, 
equipment manufacturing intelligent transformation.
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