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Abstract: The symposium on industrial green and low-carbon development held by the Ministry of Industry and
Information Technology in January 2024 emphasized the need to steadily promote carbon reduction in the industrial sector,
and improving the efficiency of green technology innovation in industrial enterprises has important practical significance
in promoting their green transformation and upgrading. Therefore, this article uses inter-provincial panel data from 2005
to 2022, and constructs super efficiency EBM model, ML index model, Dagum Gini coefficient model, and spatial Durbin
model to measure, decompose, analyze the sources of differences and influencing factors in the two-stage efficiency of
industrial enterprises. The results show that the efficiency of technology research and development is higher than the
efficiency of technology transformation, and the efficiency level of each stage is directly proportional to the economic
development level of the region. The scale efficiency level of each stage remains stable at 0.9 or above, and the low pure
efficiency is an important reason for the significantly low efficiency. The efficiency level of each stage shows an increasing
trend from 2005 to 2022, and the efficiency level of each stage in the eastern region is higher than that of other regions.
The efficiency level of China’s research and development stage shows a good development trend, but there is insufficient
coordination between technological efficiency and technological progress in the transformation stage, and there are
significant bottlenecks in the technological progress index. The differences in efficiency levels between different stages
mainly come from the differences in efficiency levels between regions, with more significant differences between the
eastern region and other regions. The industrial structure and market competitiveness have a significant promoting effect

on efficiency levels, while environmental regulations have a significant inhibitory effect on efficiency levels.
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1. Introduction

The report of the 20th Party Congress clearly puts forward that by 2035, a new type of industrialization will be
basically realized, which is defined as “industrialization + informatization + intelligentization + greenization”.
In January 2024, the Ministry of Industry and Information Technology held a symposium on the green and low-
carbon development of industry to comprehensively promote the deployment of industrial green and low-carbon
development. The meeting highlighted the necessity to steadily promote carbon emission reduction in the industrial
sector, vigorously support green and low-carbon industries, help traditional industries realize green upgrading,
and accelerate the pace of synergies between pollution reduction and carbon reduction. New quality productivity
is a living force that can promote scientific and technological innovation, integrate and utilize factor resources,
and cultivate new advantages in industrial competition, which is spawned by revolutionary breakthroughs in
technology, innovative allocation of production factors, and in-depth transformation and upgrading of industries.

Since September 2023, General Secretary Xi Jinping has repeatedly emphasized the need to focus on
integrating scientific and technological innovation resources, leading the development of strategic emerging
industries, and promoting the in-depth transformation and upgrading of industries, so as to accelerate the formation
of new quality productivity. Against the background of an industrial value added of 30.1% of GDP in 2024, new
industrialization remains the main battleground for new quality productivity. Therefore, research on the efficiency
of green technological innovation of industrial enterprises is of great significance in boosting the transformation
and upgrading of China’s industrial enterprises to green and low-carbon.

In existing studies, efficiency measurement methods mainly use frontier analysis. The frontier analysis
method contains the parametric method represented by stochastic frontier analysis (SFA) and the nonparametric
method represented by data envelopment analysis (DEA), which derives a variety of improved models such
as SBM and EBM. Additionally, research targets measured by efficiency are abundant, Liu et al. used three-
stage DEA to study the innovation efficiency of state-level high-tech industrial development zones in Sichuan
and Chongqing regions ", Liang et al. used DEA Models to measure the Efficiency of New Urbanization and
Logistics Industry in Three Provinces and One City in the Yangtze River Delta Region . Tang measured the
Circulation Efficiency of the Distribution Industry in 30 Provinces, Regions and Municipalities in China with
DEA-Malmgquist Indexes . Liu analyzed the financing efficiency of listed companies in the textile industry with
the SBM-Malmquist index model ..

Regarding the object of green technology innovation efficiency measurement, scholars mostly focus on the
regional, industry and enterprise levels. At the regional level, many scholars have measured the green technology
efficiency value of industrial enterprises in 30 provinces in China “*. Yuan and Dong evaluated the industrial
green technology innovation efficiency of the provinces in the Yellow River Basin by using the super-efficiency
EBM model, and explored the sources of regional efficiency differences through the Dagum Gini coefficient .
Huang et al. used a two-stage global network SBM-DEA model to measure the efficiency of green technology
innovation in agriculture ", Cao and Su used the super-efficient SBM-DEA model to measure the efficiency
of green technology innovation in 30 provinces in China ", Hou used the super-efficient SBM-DEA model to
measure the innovation efficiency of green transportation technology in 16 cities of Chengdu-Chongqing city
cluster from 2001 to 2020 "*. At the industry level, Yu et al. measured the technological innovation efficiency
of high-tech industries by using a non-radial SBM model . Chen measured the green technology innovation
efficiency of China’s manufacturing industry by using the super-efficiency SBM model, and categorized it into
three categories based on the change trend !'*!. At the enterprise level, Lv and Ma measured the green technology
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innovation efficiency by using the SFA method based on a sample of 801 observations from A-share listed
industrial enterprises in China """, Wang et al. measured the green technology innovation efficiency of new
energy enterprises with the SBM model "' Zou used a three-stage DEA model to measure the green technology
innovation efficiency of industrial listed companies in Shanghai and Shenzhen main boards """

In the study of influencing factors, Fang found that factors such as environmental regulation, external
technology, and industry scale are the key factors affecting the efficiency of green technological innovation in
China’s heavily polluted industries, among which the impact of over-reliance on external technology and policy
uncertainty on industrial green technological innovation is negative ', He and Cai found that the level of green
economy development, government support, enterprise revenue, and foreign investment positively affect the
efficiency of green technology innovation of industrial enterprises in 27 cities in the Yangtze River Delta "', Yan
et al. found that the degree of openness to the outside world, science and technology innovation environment
has a significant positive impact on the efficiency of industrial green technology innovation in 11 provinces and
municipalities of the Yangtze River Economic Belt, the industrial structure has a significant negative impact on the
efficiency, the dependence on foreign investment, the market competition environment also has a negative impact
on the efficiency, but not significant **.

The existing literature on the efficiency of green technology innovation is also rich, but there is still much
room for expansion as follows:

(1) In terms of research methodology, the EBM mixed distance function model is used to make up for the

shortcomings of the radial and non-radial models in the measurement of input-output variables;

(2) Focusing on the spatial imbalance of green technology innovation efficiency, the Dagum Gini coefficient
is utilized to reveal the source of regional efficiency differences and to solve the problem of cross overlap
between groups;

(3) From a research perspective, spatial econometric models are employed to analyze the impact of various
factors on pure green technological innovation at different stages to provide a reference for innovation-
driven and green transformation policies.

Based on this, the article uses inter-provincial panel data from 2005-2022 to measure, decompose, analyze
the sources of differences and influencing factors of efficiency in stages by constructing the super-efficiency EBM
model, ML index model, Dagum coefficient model, and spatial Durbin model, its research value can be explored
from both theoretical and practical perspectives. Theoretically, this multi-model integrated analytical framework
enriches the quantitative research methodology within the field. Moreover, by precisely identifying key efficiency
determinants using long-term inter-provincial data, it provides new empirical evidence for green technological
innovation efficiency studies. Practically, the findings offer actionable pathways for industrial enterprises to
advance green transformation through existing technological innovation. They also furnish robust empirical
support for policymakers seeking to optimize regional green innovation resource allocation and facilitate industrial
upgrading.

This paper is structured into five sections following a logical sequence of “background-methodology-
analysis-conclusions” as listed:

(1) The introduction clarifies the research significance, reviews existing findings, and delineates the

innovative direction;

(2) It details the research methodology, indicator system, and data processing;

(3) It measures efficiency across R&D and transformation stages, analyzing efficiency variations and regional
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disparities;
(4) It examines influencing factors through regression, robustness, and heterogeneity analyses;
(5) It summarizes conclusions and proposes policy recommendations.

2. Research methods and data processing

2.1.Research methodology
2.1.1.Super-efficient EBM model
The article measures efficiency using a super-efficient EBM model with Equation (1).
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Where & is the optimal efficiency value, (w;, w;, wh-, s;, ST, sb=.m, s, p) are the input element, expected

outputs, weights for non-expected outputs, non-zero relaxation measures and indicators, respectively; @ is the
radial conditional efficiency values; # is the output expansion ratio; ¢ is key parameters, indicating the degree of

combination of radial and non-radial, the value range is 0~1.

2.1.2. Dagum Gini coefficient model
The Dagum Gini coefficient is used to measure the degree of geospatial imbalance . The formulas for total Gini
coefficient (G), intra-group Gini coefficient (Gy), inter-group Gini coefficient (Gy,), intra-group contribution (G,,),

inter-group contribution (G,,,) and hypervariable density contribution (G,) are as follows:
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Where (n,k) represent the number of provinces and regions that is studied; (7, Vi(Vn), ¥ji(Vir)) are the
level of efficiency of i(r) industrial firms in each province, within j(h) region and j(h) region. p; = n|n, s; =

ny|ny, Dj, = mj, — njp/mj, + N, represents the relative impact between regions.
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2.1.3. Malmquist-Luenberger exponential model

The Malmquist-Luenberger productivity index model is able to decompose the efficiency change into two

components, technical progress and efficiency improvement, as follows
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[22].

@

Where DY (xt, y¢, b?) represents the generalized distance function that takes into account the non-expected

output of 4',(x,)") is the vector of inputs and the vector of desired outputs in period t. When there is no non-desired

output, i.e., when b, = b,,, =0, the ML index degenerates into the M index. EC refers to the index of change in

technical efficiency, and TC refers to the index of change in technical progress.

2.2. Selection of indicators and data sources
2.2.1. Selection of indicators

As shown in Table 1, carbon dioxide and the environmental pollution index of “three industrial wastes” calculated

by entropy value method are used as non-expected outputs to measure the green technology innovation efficiency

of industrial enterprises and then analyzed and researched. For the robustness test, the four pollutants are re-

measured and empirically analyzed for efficiency as non-expected outputs.

Table 1. Green technology innovation efficiency index system of industrial enterprises

Phase Indicator type Indicator name Indicator unit
Technology Input RD personnel (Person)
development . . .
phase RD expenditure RD internal expenditure stock (RMB 10,000)

New product development expenditure New product development expenditure balance (RMB 10,000)

Total costs for technology introduction, Total accumulated expenses for technology introduction, etc.

etc.
Intermediate input Number of patent applications
Number of valid invention patents

New product development project

(RMB 10,000)

Piece
Piece

Item

Results Energy input Total energy consumption 10,000 tons of standard coal
conversion

phase Expected output New product sales revenue Deflated by the industrial producer price index (10,000 yuan)

Unexpected Industrial wastewater 10,000 tons

output . -

Industrial sulfur dioxide 10,000 tons

Industrial solid waste generation 10,000 tons

Industrial carbon dioxide 10,000 tons

Industrial waste pollution index
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2.2.2. Data sources

The article utilizes panel data from 30 provinces and cities outside of Hong Kong, Macao, Taiwan, and Tibet of
China’s state-owned industrial enterprises from 2005-2022 to develop the analysis. The data for the article are
mainly from the EPS data platform, China Science and Technology Statistical Yearbook, China Environmental
Statistical Yearbook, China Statistical Yearbook, China Carbon Accounting Database, National Bureau of Statistics

and provincial statistical yearbooks.

In order to eliminate the effect of inflation and the cumulative effect of the funds, the funds are deflated by
the research and development price index for the base period of 2005 and then calculated by using the perpetual
inventory method. The methodology for the R&D price index is: R&D price index = 0.55*consumer price index
+ 0.45*fixed asset investment price index. The perpetual inventory method calculates the stock as follows:
K,=(1-0)K,,+1, Where KK, , are the capital stock of province i in year t and t-1, respectively. 0 denotes the
capital depreciation rate, which is set to be 20.8%, and /,, denotes the actual internal expenditure of funds in

province i in year t. According to the formula: K, = I,,/(g + 6) calculating the capital stock in the base period %,

3. Measuring and analyzing green technology innovation efficiency of Chinese
industrial enterprises

3.1. Measuring the efficiency of green technology innovation
Based on the index system constructed in the previous article, the article uses IDEA Ultra software to measure the
green technology innovation efficiency of industrial enterprises in each province of China from 2005 to 2022.

3.1.1. Analysis of technological innovation efficiency in the R&D stage

As shown in Table 2, the average values of total green technology R&D efficiency, pure green technology R&D
efficiency and scale efficiency of industrial enterprises are 0.848, 0.920 and 0.922 respectively. At the provincial
level, seven of the top ten rankings for total technology R&D efficiency are in the east, two in the center, and one
in the west. Among the ten provinces and cities ranked lower, six are in the west, two in the northeast, one in the
center, and one in the east, indicating the spatial imbalance in the efficiency of green technology R&D in various
regions of China. Scale efficiency is low in Guizhou, Gansu, Qinghai, Ningxia, Xinjiang and Hainan, especially
in Qinghai and Hainan. The pure technology R&D efficiency levels in Hainan and Qinghai are 1.002 and 0.926
respectively, but the corresponding scale efficiencies are 0.798 and 0.773 respectively, with a serious mismatch
between pure technology R&D efficiency and scale efficiency. Hainan, due to its relatively remote geographical
location, making enterprises face certain difficulties in the expansion of off-island markets, to a certain extent,
constraints on the scale of the efficiency of technology research and development in Hainan.

In addition, the relatively late start of Hainan’s industry and the insufficient capacity of the industrial system
and industrial support will also make it impossible to realize the economies of scale of technological research and
development through large-scale industrialization. At the regional level, the technical efficiency of East continues
to have the highest level. In terms of longitudinal evolutionary trends, all regions showed a more pronounced and
consistent upward trend in technology R&D efficiency over the study period, as shown in Figure 1.
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Table 2. Green technology R&D innovation efficiency of industrial enterprises

Province Efficiency of scale Pure technical R&D efficiency  Overall technical R&D efficiency  Ranking
Beijing 0.952 0.956 0911 3
Tianjin 0.947 0.945 0.894 7

Hebei 0.935 0.901 0.843 17

Shanghai 0.977 0.923 0.902 6
Jiangsu 0.974 0.934 091 4

Zhejiang 0.968 0.948 0918 2
Fujian 0.94 0.905 0.852 14

Shandong 0.969 0.921 0.893 8

Guangdong 0.968 0.982 0.951 1
Hainan 0.798 1.002 0.798 24
Shanxi 0914 0.87 0.797 25
Anhui 0.941 0.959 0.903 5
Jiangxi 0.925 0.9 0.834 20
Henan 0.931 0913 0.851 16
Hubei 0.938 0.92 0.864 12
Hunan 0.927 0.937 0.87 10

Liaoning 0.961 0.887 0.853 13

Jilin 0.941 0.865 0.816 23
Heilongjiang 0914 0.901 0.825 22
Inner Mongolia 0.893 0.857 0.767 29

Guangxi 0.928 0.899 0.835 19

Chongqing 0.943 0.917 0.866 11
Sichuan 0.929 0.956 0.888 9

Guizhou 0.886 0.948 0.841 18
Yunnan 0.898 0.923 0.829 21
Shanxi 0.924 0.922 0.852 15
Gansu 0.882 0.903 0.795 26
Qinghai 0.773 0.926 0.715 30
Ningxia 0.842 0.939 0.79 27

Xinjiang 0.874 0.899 0.785 28

Eastern Region 0.943 0.942 0.887
Central region 0.929 0.917 0.853
Western Region 0.888 0.917 0.815
Northeast Region 0.939 0.884 0.831
National level 0.920 0.922 0.848
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Figure 1. Trends in technology R&D efficiency by region.

3.1.2. Analysis of the efficiency of technological innovation at the transformation stage

As shown in Table 3, the average values of technology conversion efficiency, pure technology conversion
efficiency and scale efficiency are 0.689, 0.752 and 0.920 respectively. The conversion efficiency is much
lower than the efficiency of technology research and development, mainly caused by the low efficiency of pure
technology conversion, and the value of conversion efficiency in each region from east to west shows a decreasing
trend. At the provincial level, in the top ten regions ranked in terms of technology transformation efficiency, only
the east accounted for eight, with the remaining two being Jilin Province in the northeast and Chongqing in the
west, and among the bottom ten regions, the west accounted for eight, with the other two being Shanxi in the
center and Heilongjiang in the northeast. The eastern part of the country continues to have significant advantages
in technology transformation, but among them, Shanghai, Jiangsu, Zhejiang, Shandong and Guangdong are the
five lowest ranked regions in terms of scale efficiency, which may be due to the fact that the eastern part of the
country is rich in innovation resources, such as talents, scientific research institutes, and outstanding enterprises,
which makes the resources dispersed.

In addition, the diversified and individualized market demands in developed regions make it difficult to
achieve large-scale standardized production for technology transformation. At the regional level, the scale
efficiencies of the central, western and northeastern regions are equal and slightly higher than those of the eastern
region, but the pure technical transformation efficiencies of all three are significantly lower than those of the
eastern region, with the largest difference between the pure technical transformation efficiencies of the eastern
region and those of the western region. Compared with the eastern region, the western region’s degree of opening
up to the outside world, market development are relatively weak, information is relatively closed, access to cutting-
edge technology and market information channels are limited, and there are few opportunities for international
cooperation and exchanges, which hinders the transformation of technology.

The longitudinal evolution trend shows that the conversion efficiency in the eastern region remains high and
oscillating, much higher than in the other regions, as shown in Figure 2. As of 2022, the Northeast’s technology
conversion efficiency has bounced back to exceed the national average and even surpassed that of the Central
region. In recent years, Northeast China has accelerated the transformation of traditional industries into high-end,
intelligent and green industries, and built growth points around strategic emerging industries, which provides a

broad application prospect for technology transformation.
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Table 3. Green technology transformation and innovation efficiency of industrial enterprises

Province Efficiency of scale Pure technical R&D efficiency Overall technical R&D efficiency Ranking
Beijing 0.94 0.874 0.822 1
Tianjin 0.905 0.897 0.811 3

Hebei 0.917 0.716 0.657 20

Shanghai 0.868 0.941 0.816 2
Jiangsu 0.891 0.863 0.768 7

Zhejiang 0.882 0.885 0.779 5
Fujian 0.929 0.804 0.748 10

Shandong 0.883 0.821 0.725 11

Guangdong 0.861 0.881 0.755 9
Hainan 0.934 0.841 0.781 4
Shanxi 0.94 0.660 0.621 22
Anhui 0.936 0.769 0.72 12
Jiangxi 0.937 0.750 0.7 15
Henan 0.922 0.734 0.677 17
Hubei 0.917 0.774 0.71 13
Hunan 0918 0.772 0.708 14

Liaoning 0.917 0.745 0.684 16

Jilin 0918 0.849 0.778 6
Heilongjiang 0.938 0.651 0.608 24
Inner Mongolia 0.931 0.662 0.614 23

Guangxi 0.946 0.711 0.672 18

Chongqing 0.922 0.823 0.76 8
Sichuan 0.927 0.716 0.665 19

Guizhou 0.952 0.607 0.577 28
Yunnan 0.951 0.631 0.600 25
Shanxi 0.95 0.666 0.633 21
Gansu 0.935 0.642 0.594 26
Qinghai 0.857 0.66 0.561 29
Ningxia 0.937 0.629 0.585 27

Xinjiang 0.93 0.579 0.536 30

Eastern Region 0.901 0.852 0.766
Central region 0.928 0.743 0.689
Western Region 0.931 0.666 0.618
Northeast Region 0.925 0.748 0.690
National level 0.920 0.752 0.689
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Figure 2. Trends in technology transfer efficiency by region.

3.2. Malmquist-Luenberger index analysis

The efficiency level was measured and analyzed in the previous section, and the ML index in this section is able to
decompose the efficiency change into two parts: technological progress and efficiency improvement, which helps to
clarify whether the increase in the efficiency of green technological innovation is originated from the improvement
of the technological level or the improvement of the efficiency of resource utilization and other efficiency in the
production process, so as to analyze the intrinsic mechanism of the efficiency change in a more in-depth manner.

3.2.1. Malmquist-Luenberger index analysis of the R&D phase

As shown in Figure 3, the ML index and technical progress index of the 30 provinces in the R&D stage are all
greater than 1, and the efficiency change index and technical progress index are all distributed below the ML
index, indicating that the relationship between technical efficiency and technical progress is coordinated in all
regions in the R&D stage, and the overall development of China’s green technology R&D efficiency is good.
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Figure 3. ML index decomposition of technology R&D efficiency in each province.

3.2.2. Dynamic analysis of the Malmquist-Luenberger index at the transformation stage

As shown in Figure 4, there are 18 provinces with ML indexes less than 1 at the transformation stage, of which 13
provinces, including Hebei, Fujian, Shanxi, and Jiangxi, are caused by the technical regression index less than 1.
Hainan is caused by the technical efficiency index less than 1, mainly caused by the decline of technical efficiency,
and Tianjin, Shanghai, and Jilin are caused by both the technical efficiency index and the technical progress index less
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than 1, caused by the combination of technological regression and the decline of technical efficiency. The technical
efficiency index is higher than the technical progress index in most regions, and the gap between the technical
efficiency index and the technical progress index is more significant in the central, western and northeastern regions.
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Figure 4. ML index decomposition of the efficiency of technological transformation in each province.

3.3. Decomposition of regional differences in green technology innovation efficiency
This section calculates and decomposes the regional differences in green technology innovation efficiency, R&D
efficiency and transformation efficiency of industrial enterprises in 30 provinces of China from 2005 to 2022 by

applying the Dagum Gini coefficient decomposition method through stata software.

3.3.1. Decomposition of regional differences in green technology R&D efficiency

As shown in Table 4, the total Gini coefficient shows a decreasing trend, which is from 0.053 to 0.023, and
the efficiency differences within and between regions also show a decreasing trend, The degree of spatial
differentiation of efficiency within the four regions is West > East > Center > Northeast, and differences in
efficiency are the greatest between the eastern and western regions. The average contribution of interregional
efficiency differences in the R&D phase (57.278%) remains much larger than the average contribution of
intraregional differences (23.722%) and the average contribution of hypervariable density differences (19.002%).

Table 4. Gini coefficient and decomposition of green technology R&D efficiency in industrial enterprises

Contribution
Year Gini coefficient
Gw Gnb Gt

2005 0.053 25.525 43.880 30.637
2006 0.060 25.830 31.533 42.637
2007 0.054 25.327 43.591 31.082
2008 0.044 24.434 50.710 24.856
2009 0.042 24.469 56.166 19.365
2010 0.045 24.658 57.574 17.768
2011 0.043 24319 61.309 14.372
2012 0.039 24.659 59.631 15.709
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Table 4 (Continued)

Contribution
Year Gini coefficient
Gw Gnb Gt

2013 0.035 24.529 60.331 15.140
2014 0.037 24.064 57.799 18.137
2015 0.036 24.445 55.685 19.870
2016 0.033 23.819 57.277 18.904
2017 0.029 23.024 58.883 18.093
2018 0.026 23.100 60.437 16.463
2019 0.024 22.827 65.667 11.505
2020 0.021 21.872 68.249 9.880
2021 0.023 20.581 71.277 8.142
2022 0.023 19.519 71.007 9.474
Mean 0.037 23.722 57.278 19.002

3.3.2. Decomposition of regional differences in green technology transfer efficiency

As shown in Table 5, the average value of the total Gini coefficient, the average value of the Gini coefficient within
each region and the average value of the Gini coefficient between regions are significantly larger in the technology
transformation stage than in the R&D stage. The degree of spatial differentiation within each region is presented as
Northeast > West > East > Center. The differences in the efficiency of technology transfer are the largest between the
East and the West. Differences in conversion efficiency mainly come from inter-region, and the average contribution
of inter-regional differences to the total differences even reaches 64.773%, which is much higher than the average
contribution of intra-region (20.335%) and the average contribution of hypervariable density (14.897%).

Table 5. Gini coefficient and decomposition of green technology transformation efficiency of industrial enterprises

Contribution
Year Gini coefficient
Gw Gnb Gt

2005 0.113 18.115 75.064 6.821
2006 0.097 20.636 66.422 12.942
2007 0.083 20.406 69.856 9.738
2008 0.076 16.940 71.101 11.958
2009 0.066 22.808 48.829 28.363
2010 0.079 17.691 70.058 12.251
2011 0.073 21.730 61.050 17.220
2012 0.070 22278 60.068 17.653
2013 0.074 18.214 74.593 7.193
2014 0.074 19.292 70.471 10.237
2015 0.078 18.946 66.460 14.594
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Table 5 (Continued)

Contribution
Year Gini coefficient
Gw Gnb Gt

2016 0.071 21.110 61.037 17.853
2017 0.067 20.830 58.156 21.105
2018 0.060 24.855 58.646 16.499
2019 0.095 16.817 74.702 8.481
2020 0.064 22.674 57.723 19.603
2021 0.075 23.456 57.925 18.619
2022 0.077 19.234 63.744 17.022
Mean 0.077 20.335 64.773 14.897

4. Research on the influencing factors of green technology innovation efficiency of
Chinese industrial enterprises

4.1. Variable selection

The government is the one who formulates and implements environmental protection policies, green development
strategies and technical standards, the enterprise is the direct implementer of green technological innovation, and
the market is an important testing ground for green technological innovation, and the three constitute a dynamic
innovation ecosystem. Therefore, this paper researches the influencing factors of pure green technology innovation
efficiency of industrial enterprises from these three aspects, and the specific indicators selected are shown in Table 6.

Table 6. Impact factors and their measurement indicators

Symbol Variable Variable measure Unit
RDPI Human resource The ratio of personnel in R&D institutions of large-scale industrial enterprises person/
investment to the number of R&D institutions in large-scale industrial enterprises individual
Research and The proportion of internal expenditure on R&D funding above the specified o
RDI . . . . %
development expenditure standard in total industrial output value
. The ratio of total assets of large-scale industrial enterprises to the number of ~ Ten thousand
SC Company size

large-scale industrial enterprises yuan per unit

Proportion of government funds in internal R&D expenditure of industrial

t It . . . 9
GOV Government suppo enterprises above designated size &
... . Main business income of state-owned and state-controlled industrial enterprises o
ST Degree of nationalization . . . . . . s . %
/ Main business income of large-scale industrial enterprises within the region
ER Env1ronm'e ntal Industrial pollution control investment as a percentage of GDP %
Regulation
MC Market competitiveness Number of industrial enterprises above designated size Take the logarithm Individual
RDC R&D competitiveness Number of large-scale in'dustria! enterpris§s with R&D institvut.i(')ns / Number of %
large-scale industrial enterprises with R&D activities
FDI Foreign investment Foreign direct investment as a percentage of GDP %
IS Industrial structure Secondary industry GDP as a percentage of GDP %
. Th ion of lled i lar high i
EL Level of education e proportion of undergraduate students enrolled in regular higher education %

institutions relative to the region’s permanent resident population at year-end
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4.2. Model construction
The general form of the Spatial Durbin Model (SDM) is as follows:

yt'z:a+pm;yn+ﬂxn+/lwlyxn+ﬂi+Vz+Wiz Q)

Where « is constant term , (p,4) are the spatial lag term coefficients, £ is the coefficient of the explanatory
variable, W, is spatial weighting matrix, the text refers to the spatial geographic distance square matrix and the
spatial geographic distance matrix, (pW,y,,AW,x,) represent the spatial lag term of the explained and explanatory
variables, (u;,v,w;) represent the individual, time fixed effects, and error terms, respectively.

4.3. Model checking

As shown in Table 7, the Moran’s index test is significant at the 10% level, indicating that the non-spatial panel
model regression results are not sufficiently reflective of the true state of the economy. The p-value of SEM test,
robust SEM test, SAR test, and robust SAR test in the LM test is less than 0.1, indicating that both models are
applicable. The LR model test p-value is less than 0.1 and the spatial Durbin model outperforms the spatial error
model and the spatial lag model. Furthermore, the P-value in the LR time-individual fixed effects test was less
than 0.1, and it was more reasonable to choose two-way fixed effects. The p-value in the Wald test is less than 0.1,
confirming that the spatial Durbin model does not degenerate into a spatial lag and spatial error model.

Table 7. Green technology innovation efficiency spatial measurement model selection test

Research and development phase Transformation stage
Spatial model testing
Value P-Value Value P-Value
Moran’s I 6.748 0.000 6.640 0.000
Lagrange multiplier 39.870 0.000 38.552 0.000
Robust Lagrange multiplier 10.910 0.001 12.700 0.000
Lagrange multiplier 82.640 0.000 26.252 0.000
Robust Lagrange multiplier 53.680 0.000 0.400 0.527
LR=SDM/SAR 88.480 0.000 41.29 0.000
LR=SDM/SEM 88.680 0.000 38.77 0.000
LR-both/time 62.190 0.000 253.51 0.000
LR-both/ind 378.640 0.000 48.71 0.000
Wald-SDM/SAR 153.610 0.000 26.53 0.005
Wald-SDM/SEM 164.720 0.000 26.85 0.005

4.4. Regression analysis
Through the above model test, the article used the spatial Durbin model with double fixed effects to analyze the
various factors affecting the efficiency of green pure technological innovation of industrial enterprises in China,
and the results are shown in Table 8.

The coefficients of human resource input (RDPI) at the stage of technology R&D and W*RDPI are 0.092
and 0.220, respectively, and both are significant at the 5% test level, indicating that the input of human resources
at the stage of technology R&D not only promotes technology R&D in the region, but also promotes technology
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R&D in neighboring regions. At the stage of technological transformation, the input of human resources has a
non-significant facilitating effect on the region, but a very significant inhibiting effect on neighboring regions. The
investment of human resources in the region may lead to the gathering of talents, promote knowledge sharing and
cooperation, optimize resource allocation, and make technological innovation and transformation more efficient.
Human resource inputs from neighboring regions often compete with resource allocations in their own regions,
which may lead to brain drain and competition for resources, thereby inhibiting the efficiency of neighboring
regions. While human resource investment in the region improves technological R&D and innovation capabilities,
this knowledge and experience tends to spill over to neighboring regions through channels such as cooperation,
exchanges, and industry conferences, leading to technological R&D and innovation in neighboring regions.

R&D capital investment (RDI) has an inhibitory effect on technological R&D in the region at the R&D stage,
but has a significant role in promoting technological R&D in neighboring regions at the 1% test level. Local R&D
funding may inhibit local technological R&D due to allocation imbalance and path dependence, while at the same
time positively promoting technological R&D in neighboring regions due to the local innovation environment
that attracts attention and cooperation from them. The promotion effect of R&D capital investment on technology
transformation in the region and the inhibition effect on technology transformation in neighboring regions are not
obvious at the transformation stage.

The coefficient of firm size (SC) in the R&D stage is -0.144, which is significant at the 5% test level,
indicating that firm size has a significant inhibitory effect on the efficiency of technological research and
development, while the effect of firm size on the efficiency of technological transformation is not significant.
Large firms have a certain dominant position in the market by virtue of their existing technological advantages
and product lines, which may lead to a weakening of competitive pressures in the industry, and lack pressure in
innovation. Enterprise size has a significant inhibitory effect on the efficiency of both technological R&D and
technological transformation in neighboring regions, and this inhibitory effect suggests that in the process of
enterprise development due to the monopoly effect of the market, restricted technological diffusion, or competition
for talents, the development of local enterprises will have a weakening effect on the development of enterprises in
neighboring regions.

The effect of government support (GOV) on technology R&D efficiency and technology transfer efficiency
is insignificant and it is significant at 5% level for neighboring regions. Due to the cooperation synergy effect,
enterprises in neighboring regions are more likely to form cooperation with enterprises in their own regions and
take advantage of their own technological resources, government support, etc. to realize the improvement of the
efficiency of technological research and development and technological transformation.

The degree of nationalization (ST) and the efficiency of technological R&D and technological transformation
are significant at the 1% and 5% levels with coefficients of 0.209 and 0.480, respectively. The degree of
nationalization inhibits the level of technological innovation efficiency and the efficiency of technological research
and development of industrial firms in neighboring regions. Although there are some long-term institutional
barriers to state-owned enterprises, state-owned enterprises have a large number of key laboratories, technology
centers, talent centers, etc., which still play a leading role in innovation.

The coefficients of environmental regulation (ER) at different stages are -0.098, -0.091 and are significant at
1%, 1% and 5% test levels, respectively, indicating that environmental regulation has a significant inhibitory effect
on the efficiency of both the R&D stage and the transformation stage. Environmental regulation has a negative
spillover effect, and it has a significant inhibitory effect on the efficiency of technology R&D in neighboring
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regions and a non-significant effect on the promotion of transformation efficiency in neighboring regions. It
can be seen that environmental regulation mainly manifests in increasing compliance costs for firms, which can
have a depressing effect on the development and transformation of technology. In addition, strict environmental
regulatory policies in the province and city will force enterprises with high pollution levels and more difficult
transformation and upgrading to move their industries to neighboring provinces and cities where environmental
control is easier, adding to the pressure of local environmental pollution.

The relationship between the degree of market competition (MC) and the efficiency of technological
development is not significant, and the relationship with the efficiency of technological transformation is
significant at the 1% level with coefficients of 0.200 and 0.169, respectively. The coefficients of W*MC for the
R&D stage and the technology conversion stage are -2.354 and -1.499, respectively, and both are significant at the
1% test level. The degree of competition in the market can motivate firms to continuously improve the efficiency
of technological transformation, neighboring regions may inhibit technological R&D and transformation due to
over-concentration of resources or shifting of competitive pressures.

R&D competitiveness (RDC) has a significant positive contribution to technology R&D efficiency with a
coefficient of 0.073 and the coefficient is significant at 5% level, while R&D Competitiveness and the technology
transformation efficiency are insignificant. There is a positive spatial spillover effect of local competitiveness
in technology R&D, but the effect on the efficiency of technology R&D and technology transformation in
neighboring regions is not significant, with coefficients of -0.156 and -0.051, respectively.

Foreign investment (FDI) does not play a significant role in the region’s technology R&D and technology
transformation efficiency, but the coefficient of FDI and technology transformation efficiency is 0.246, which
is significant at the 10% level, indicating that the technology and management model of foreign enterprises can
positively influence neighboring regions through the relationship of human capital flow and supply chain.

The coefficients of industrial structure (IS) in the R&D and transformation stages are 0.235 and 0.133
respectively, and are significant at the 5% and 1% levels, indicating that an increase in the share of value added
of the secondary industry in GDP can promote the efficiency of technological research and development and
the efficiency of technological transformation. The rapid development of the secondary industry often requires
technological advances and innovations to enhance competitiveness, prompting firms to engage in green
technological innovations to meet regulatory and market requirements for the environment. This demand drives
the rapid development of green technologies. IS can have a positive spillover effect, significantly contributing to
technology development and technology transformation in neighboring regions.

The coefficient of education level (EL) at the R&D stage is 0.259 significant at the 1% level, and the
coefficient of W*EL is not significant, indicating that the development of education in the region can effectively
lead to the improvement of the quality of workers in the region. The coefficient of EL at the stage of transformation is
-0.499, which is significant at the 1% level, and the coefficient of W*EL is -0.027, which has a non-significant
effect, and the level of education has an inhibitory effect on the efficiency of technological transformation in the
region and neighboring regions. Highly educated R&D personnel may be more inclined to theoretical innovation
research, neglecting practical application transformation, commercial application transformation thus inhibiting
the efficiency of technology transformation.
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Table 8. Spatial Durbin regression results

PTEC1 PTEC2
Variable name
Main Wx Main Wx
0.092%%* 0.220%* 0.031 -0.271%**
RDPI -2.116 -2.236 -0.682 -2.596
RDI -0.117 0.600%*** 0.130 -0.172
-1.449 -3.138 -1.531 -0.856
e -0.144%* -0.667%%* 0.008 -0.293*
-2.075 -4.662 -0.113 -1.956
GOV 0.012 0.217%* -0.006 -0.215%*
-0.32 -2.334 -0.151 -2.198
ST 0.209%** -0.875%*%* 0.480%%*%* 0.081
-2.234 -4.111 -4.874 -0.356
ER -0.098*** -0.352%%%* -0.091%** 0.085
-2.840 -3.466 -2.498 -0.799
MC 0.200 -2.354%%%* 1.690%%** -1.499%%*%*
-0.918 -4.980 -7.376 -2.946
0.073%%* -0.156 0.024 -0.051
RDC -2.237 -1.495 -0.683 -0.464
FDI 0.047 0.109 0.010 0.246*
-0.952 -0.911 -0.191 -1.946
IS 0.235%** 0.113 0.133%%* 0.492%%*
-4.141 -0.893 -2.201 -3.796
EL 0.259%%* -0.088 -0.499%%* -0.027
-2.157 -0.287 -3.940 -0.082

4.5. Robustness analysis

The article adopts two methods to conduct robustness tests on the pure efficiency values of the R&D stage and the
transformation stage respectively to ensure the credibility of the empirical results, as shown in Table 9. The two
methods are as follows:

(1) Replacing weights: The previous article used a spatial geographic distance square matrix for the empirical
study, this article replaces the matrix with a spatial geographic distance matrix for the empirical study
again and finds that the sign and significance of the data remain consistent, indicating that the results are
robust;

(2) Replacing measures of efficiency: In the previous paper, the environmental pollution indexes of industrial
carbon dioxide and “industrial three wastes” were used as non-expected outputs in the efficiency
measurement, but here the non-expected outputs are replaced by “industrial three wastes” and industrial
pollution to conduct empirical analysis after re-measuring the efficiency, and it is found that the sign and

significance of the data are still the same as that of the data and the results are robust.
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Table 9. Robustness test of pure green technology innovation efficiency

Research and development phase Transformation stage
Vz;‘;l;le Replace weights Replacing measures of efficiency Replace weights Replacing measures of efficiency
Main Wx Main Wx Main Wx Main Wx
RDPI 0.083* 0.622%* 0.092%%* 0.220%* 0.014 -0.544%* 0.044 -0.232%*
-1.912 -2.442 -2.116 -2.236 -0.299 -1.963 -1.051 -2.414
RDI -0.069 2.396%** -0.117 0.600%*** 0.103 -0.088 0.087 -0.069
-0.878 -4.793 -1.449 -3.138 -1.199 -0.163 -1.112 -0.373
e -0.170%*  -1.515%** -0.144%* -0.667%** -0.015 -0.766* -0.026 -0.225
-2.520 -4.063 -2.075 -4.662 -0.200 -1.893 -0.386 -1.633
GOV 0.011 0.731%** 0.012 0.217%* -0.019 -0.547%* -0.006 -0.163*
-0.29 -2.859 -0.32 -2.334 -0.438 -1.984 -0.149 -1.810
ST 0.193** 2 151*** 0.209%%* -0.875%#* 0.502%** 0.507 0.452%** 0.072
-2.086 -3.759 -2.234 -4.111 -5.013 -0.814 -4.986 -0.348
ER -0.114%%% 1,04 1%** -0.098%** -0.352%%* -0.080%* 0.236 -0.085%* -0.014
-3.264 -4.117 -2.840 -3.466 -2.114 -0.865 -2.530 -0.145
MC 0.116 -5.428%%* 0.200 -2.354%%% 1.549%** — .3.201** 1.507%** -1.425%%*
-0.55 -4.617 -0.918 -4.980 -6.775 -2.481 -7.156 -3.059
RDC 0.018 -1.150%** 0.073%%* -0.156 0.017 -0.128 0.010 -0.093
-0.527 -3.869 -2.237 -1.495 -0.466 -0.397 -0.315 -0.915
FDI 0.085%* 0.191 0.047 0.109 0.048 0.832%** 0.066 0.243%*
-1.674 -0.563 -0.952 -0.911 -0.865 -2.257 -1.378 -2.088
IS 0.238%** 0.482%* 0.235%** 0.113 0.143%%  1.345%** 0.155%** 0.607%**
-4.214 -1.66 -4.141 -0.893 -2.321 -4.357 -2.77 -5.052
EL 0.270%** -0.046 0.259%%* -0.088 -0.476%**  -0.074 -0.367%** -0.166
-2.274 -0.051 -2.157 -0.287 -3.691 -0.076 -3.146 -0.557

4.6. Heterogeneity analysis
The 30 provinces in China were divided into four regions, East, Central, West and Northeast, and were empirically
demonstrated with the spatial Durbin regression model respectively, and the analysis results are shown in Table 10.
R&D personnel and industry structure in the eastern region contribute significantly to the efficiency
of technological R&D, while firm size inhibits the efficiency of technological R&D at the 1% level. In the
transformation phase, both R&D expenditure and industry structure contribute significantly to the level of
efficiency. R&D expenditure, government support, and the degree of R&D competition in the central region are all
unfavorable to the improvement of R&D efficiency, and the factors that play a significant role in contributing to
the improvement are the degree of market competition and the level of education. The degree of R&D competition
may lead to fragmentation of resources and manpower, hindering the efficiency of technology development.
In contrast, none of the influencing factors at the transformation stage had a significant effect on the level of
efficiency. Human resource investment and education level in the western region contribute significantly to the
efficiency of technological R&D, and R&D expenditure and industrial structure play a significant inhibitory role.
Government support, the degree of nationalization, and the degree of market competition can significantly
promote the transformation of technology, while environmental regulations and the degree of R&D competition
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can hinder the transformation of technological achievements. Environmental regulation requires firms to comply
with relevant environmental standards, which often requires firms to consider issues such as the cost of pollution
control associated with the use of technology, and may lead to relatively less transformation of innovations for
commercialization. Foreign investment, education level, degree of nationalization and environmental regulation all
have a significant effect on R&D efficiency in the Northeast at the 1% level, with the first two being promotional
and the latter two being inhibitory.

In the transformation stage, the investment of R&D personnel and the degree of R&D competition will
inhibit the transformation of technological achievements, while the degree of nationalization, the degree of market
competition and industrial restructuring will significantly promote the transformation of technology. Traditional
industries in the northeast region account for a large proportion of the overall transformation and upgrading is
slow, its slow economic development and high-quality talent loss make the overall quality of RD personnel to
reduce, thus inhibiting the level of regional transformation efficiency level, and the improvement of the market

environment can effectively promote the commercialization of technological achievements.

Table 10. Spatial heterogeneity regression results

Eastern region

Central region

Western region

Northeast region

Variable
name PTEC1 PTEC2 PTEC1 PTEC2 PTEC1 PTEC2 PTEC1 PTEC2
0.103* 0.235 0.086 0.154 0.183%* 0.080 0.122 -0.787%**
RoP! -1.749 -1.217 -1.259 -1.408 -2.181 -0.867 -1.125 -2.843
0.244 1.148%%%  _0.265%* 0.003 -0.599% % 0.052 0.287 -0.623
e -1.586 -3.479 -2.489 -0.017 -5.207 -0.408 -1.367 -1.192
-0.499%** -0.305 -0.341 0.413 0.019 -0.022 -0.328 0.434
3¢ -3.661 -1.141 -1.623 -1.076 -0.099 -0.103 -0.736 -0.371
0.047 -0.006 -0.127%* 0.023 0.053 0.194%* -0.024 0.146
ooV -1.035 -0.029 -2.452 -0.289 -0.665 2211 -0.362 -0.86
-0.124 0.139 0.193 -0.048 0.206 0.366* -1.019%% 0.947**
> -1.113 -0.292 -1.226 -0.15 -1.078 -1.741 -4.618 -2.034
-0.054 -0.1 -0.026 0.195 -0.079 -0.115% -0.200%** 0.16
ER -1.159 -0.453 -0.364 -1.58 -1.306 -1.713 -2.752 -0.989
0.25 -1.685 0.596%* 0.531 -0.175 1.195%%%* -0.538 3.219%%*
Me -0.655 -0.949 -2.497 -1.645 -0.433 2.672 -0.938 -2.148
-0.025 0.267 -0.176%* -0.045 0.075 -0.368%** -0.176 -0.934%+*
Rpe -0.542 -0.993 -2.44 -0.411 -0.831 -3.737 -1.621 -3.162
-0.023 -0.272 -0.075 -0.025 -0.041 0.037 0.417%** 0.499
ol -0.342 -1.18 -1.134 -0.262 -0.505 -0.42 -3.191 -1.577
0.45] %% 2,358k -0.093 -0.195 -0.286%* -0.003 0.158 3.469%**
5 2,724 -4.941 -1.063 -0.836 -2.39 -0.025 -0.518 -4.333
-0.421 -0.173 1.093%*%* -0.451 0.438%* -0.098 1.301%%%* 0.634
i -1.336 -0.174 -4.115 -0.959 -2.033 -0.412 -4.006 -0.83
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5. Conclusions and policy implications

The article used the panel data of 30 provinces and cities in China from 2005 to 2022 to measure, decompose
and analyze regional differences in green technology R&D efficiency and transformation efficiency of industrial
enterprises in China by using the super-efficiency EBM model, the ML index model and the Dagum Gini
coefficient model, then the article analyzed the influencing factors of pure efficiency at each stage by using the
spatial Durbin model, and robustness and heterogeneity analyses were also performed, the conclusions are as
follows.

Through the efficiency measurement and analysis, it is found that:

(1) Technology R&D efficiency > technology transformation efficiency, and the level of efficiency at each
stage is directly proportional to the level of economic development of the region; Scale efficiency stabilized above
0.9 at all stages, and low levels of pure efficiency contributed to low levels of total efficiency.

In view of the fact that the efficiency of technology transformation is much lower than the efficiency of
technology research and development, and there are bottlenecks in technological progress at the transformation
stage, it is necessary to strengthen the collaborative research and development and innovation of industry-
university-research, and at the same time, to focus more on the breaking down of barriers to technological
transformation. Through the establishment of “R&D-pilot-industrialization” whole chain docking mechanism,
enterprises are encouraged to join colleges and universities, research institutes to form industrial innovation
alliances, set up special funds for technology transformation, and focus on supporting the construction of
pilot platforms in new quality productivity areas such as artificial intelligence, Internet of Things, and green
manufacturing. Implementing the system of “revealing a list of commanders”, focusing on necklace technologies,
such as high-end chips and industrial software, and improving the transformation efficiency through market-
oriented projects. Optimize the allocation of resources at the transformation stage and use digital tools (e.g.,
industrial Internet) to monitor the process of technology transformation in real time, reduce the mismatch of
resources, and improve the efficiency of pure technology (e.g., management efficiency);

(2) The level of efficiency in all phases tends to increase from 2005-2022, with the Eastern region
having a higher level of efficiency in all phases than the other regions; China’s overall stage and R&D stage
efficiency levels show good development, but there is insufficient coordination between technical efficiency and
technological progress at the transformation stage, and there are significant bottlenecks in technological progress.
Differences in the level of efficiency at each stage come mainly from differences in the level of efficiency between
regions, with more pronounced differences between the eastern region and the other regions.

Based on the fact that the efficiency level in the eastern region is much higher than that in other regions, i.e.,
the problem of imbalance in efficiency levels among regions, efforts should be made to promote the balanced
development of regions. In the eastern region, relying on the advantages of R&D and transformation, focusing on
the development of the “R&D headquarters + transformation base” model, exporting technological achievements
to the central and western regions, and establishing a cross-regional benefit-sharing mechanism (e.g., technology
shareholding, tax revenue sharing). Central, western and northeastern regions, undertake the transfer of technology
from the east, build regional technology trading markets, and reduce the cost of transformation. Establishing an
“Eastern-Western and Northeastern China Technology Transfer Fund” to support the transformation of research
and development results from the east in the central, western, northern and eastern China; and establishing an
“enclave economy” model, for example, by constructing industrial parks in the East in the Central and Western
China, so as to achieve complementarity of resources. Promoting the twinning of city clusters such as Beijing-
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Tianjin-Hebeli, the Yangtze River Delta, and the Guangdong-Hong Kong-Macao Greater Bay Area with central and
western provinces to reduce regional disparities through the division of labor in industrial chains and the sharing
of innovation resources.

Through analysis of influencing factors, it was found that at the national level, the degree of nationalization
and industrial structure contribute significantly to the level of efficiency, environmental regulation plays a
significant inhibitory role in the level of efficiency, and human resource investment, R&D competitiveness, and
market competitiveness have a significant role in the efficiency of the R&D stage only, and the former two play a
significant contributing role, while the latter plays an inhibitory role. The level of education plays a significant role in
promoting the efficiency of the R&D stage and a significant inhibiting role in the efficiency of the transformation
stage.

Based on the results of the regression analysis, it is necessary to promote the transformation of state-owned
enterprises into innovative subjects, encourage central enterprises and state-owned enterprises to take the lead in
forming innovation consortiums, and give play to the positive effect of the degree of nationalization on efficiency
through the introduction of market-based assessment mechanisms, such as the proportion of R&D investment and
the effectiveness of the transformation of the linkage between the salary. We also need to pull industrial structural
adjustment with new quality productivity, accelerate the deep integration of “intelligent manufacturing + industrial
Internet”, such as guiding enterprises to use cloud computing and empowering them with intelligence, relying
on low-cost SaaS platforms and intelligent decision-making systems to improve production and management
efficiency, building a national industrial big data platform, promoting cross-regional and cross-industry data
sharing, and narrowing the regional efficiency gap and reshape the pattern of industrial development with new
quality productivity. Besides, formulating “industrial green technology innovation roadmap”, such as giving
low-carbon technology research and development tax breaks, improving the carbon emissions trading market
mechanism, turning environmental regulatory pressure into innovation momentum, forcing enterprises to upgrade
technology is still an urgent task. In addition, Through the “New Quality Productivity Talent Special Program”,
focusing on cultivating “R&D + Transformation” composite interdisciplinary talents, as well as lowering the
threshold of entry, strengthening intellectual property protection and other ways to consolidate the foundation of
applied talents and amplify the degree of competition in the market to promote efficiency is also very important.

At the level of regional heterogeneity, each influencing factor has a different effect on the level of efficiency
at each stage in the East-Central-West and Northeast regions. Based on the results of the analysis of regional
heterogeneity, it is necessary to optimize the allocation of regional resources and unleash new quality productivity
dynamics. In the eastern region, we will continue to consolidate our advantages in human resources and industrial
structure, and attract global innovation factors through the “talent + capital + technology” integration model.

In the central region, direct government intervention should be reduced, and market vitality should be
stimulated through the liberalization of industry access, the cultivation of specialized small and medium-sized
enterprises, and other competitive policies that expand the autonomous decision-making power of enterprises.
In response to problems such as inefficient utilization of R&D funds, a digital platform is used to fine-tune the
management of funds and to regularly track the effectiveness of the use of funds. The western region should
balance environmental regulation and efficiency improvement, develop green technologies such as photovoltaic,
wind power and energy storage, and turn environmental pressure into low-carbon industrial advantages. The
government can strengthen special subsidies and green finance to guide enterprises to adopt cleaner production
technologies. Strengthening human resources development, implementing the “Western Talent Return Program”,

141 Volume 9, Issue 1



and relying on the Chengdu-Chongqing, Xi’an and other urban agglomerations to create a regional talent
plateau. In the Northeast, foreign investment and cooperation should be expanded by taking advantage of
geographic location, introducing advanced technology and management experience, and activating the dynamics
of market competition. Optimizing the talent policy to curb the problem of “manpower loss”, such as through
school-enterprise cooperation to train industrial workers, relying on the transformation of old industrial bases
demonstration zones, to promote the deep integration of traditional industries and digital technology, such as steel,

equipment manufacturing intelligent transformation.
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