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Abstract: Objective: Existing research mainly relies on quantitative indicators. However, the subjectivity of qualitative 
indicators and the problem of their difficulty in quantification limit the comprehensiveness of evaluation. Therefore, a 
resilience supplier evaluation method based on the improved Z-number-ORESTE is proposed. Methods: Through the 
construction of a multi-tiered evaluation index system incorporating supplier capabilities, resources, strategic aspects, 
and resilience, Z-numbers are harnessed to signify qualitative indicators. An advanced Z-number distance metric is 
implemented, meticulously considering the impact exerted by the reliability portion of Z-numbers on information risk. 
The refined ORESTE ranking algorithm introduces the concepts of strong and weak orderings and capitalizes on the 
Borda assignment function. This approach facilitates a more precise appraisal of the performance of alternative solutions. 
By amalgamating the improved Z-number distance measurement approach with the ORESTE ranking methodology for 
multi-attribute decision-making, it becomes feasible to more efficiently assess the recovery capacities and adaptability of 
suppliers in the face of unforeseen incidents and risks. Results: Through the analysis of the comprehensive performance 
of the existing suppliers of a certain electronics enterprise, the results regarding the suppliers’ recovery capabilities and 
adaptability when facing unexpected events and risks are obtained. Eventually, the suppliers that are in line with the long-
term development strategy of the enterprise are selected. Conclusion: This evaluation system has verified its feasibility and 
effectiveness. Moreover, the system is capable of effectively identifying and selecting resilient suppliers, providing more 
reliable decision-making support for the enterprise’s supply chain management.

Keywords: Z-number distance measure; Oreste ranking method; Multi-criteria decision-making; Evaluation of resilience 
in suppliers

Online publication: July 15, 2025

1. Introduction
In the complex and changing business environment, manufacturing companies face severe challenges in supply 
chain management, and suppliers, as the core link, are selected and evaluated to directly affect cost, quality, and 
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customer satisfaction. For example, Nazari-Shirkouhi et al. included supplier resilience into consideration to 
cope with globalized competition and contingency shocks, and Gökler et al. considered suppliers’ environmental, 
social, and governance (ESG) performance under the concept of sustainable development [1, 2]. However, as the 
risk of supply chain disruption increases, resilient supplier evaluation is becoming a hot research topic. Resilience 
specifically refers to a supplier’s ability to quickly resume operations in the time of risk, and has become a key 
metric for improving supply chain resilience.

Existing resilient supplier evaluation studies have primarily relied on quantitative metrics, such as product 
cost, pre-prepared inventory levels, and lead time variability, as seen in the works of Davoudabadi et al., 
Mahmudul Hassan et al., Fallahpour et al., and Abedian et al. [3–6]. However, there is a growing shift toward 
incorporating qualitative metrics, including product reliability, agility, traceability, and resilience. However, the 
evaluation of qualitative indicators is susceptible to subjective factors and difficult to quantify, and scholars mostly 
use Triangular Fuzzy Number (TFN), Intuitionistic Fuzzy Number (Interval-valued Intuitionistic Fuzzy (IVIF)), 
and so on to quantify. However, since the decision-making process of indicator evaluation requires the design 
decision-maker to have multidisciplinary knowledge, the experts involved in the decision-making process often 
need to consider its reliability due to the limitations of their own knowledge structure and other constraints. In 
contrast, the Z-number characterizes the certainty and uncertainty information through the probability and intensity 
parameters synchronously, which can effectively reduce the subjective bias, and its intuition is more acceptable 
to the decision makers. Although scholars such as Wang et al., Aliev et al., Yaakob et al., and Dong et al. convert 
Z-numbers to classical fuzzy numbers for distance measurement, such methods suffer from information loss 
defects [7–10]. Shen et al., Das et al., Cheng et al., and Hu et al. propose a novel measurement based on potential 
probability distribution methods, but still do not fully consider the impact of decision makers’ risk preferences on 
information risk [11–14]. Although improved methods have been proposed by Shen et al. and Chen et al. to improve 
the measurement accuracy and reliability, they are still insufficient [15, 16]. In this paper, the Z-number distance 
measure will be further improved by combining the preferred distance measure of Shen et al. [15]. 

Existing studies have used multi-attribute decision-making methods to evaluate suppliers. For example, 
Haldar et al. and Sahu et al. applied the TOPSIS method to evaluate strategic suppliers in disaster scenarios, 
where they used fuzzy numbers to assess supplier performance on general selection criteria (e.g., product quality) 
and resilience attributes (e.g., responsiveness) [17, 18]. Sahu et al. used the VIKOR method for ranking suppliers in 
a fuzzy environment to identify the most desirable toughness suppliers [18]. However, these methods rely on the 
setting of the ideal solution and are susceptible to the interference of subjective factors, which affects the reliability 
of the results. The ORESTE method, on the other hand, achieves the ranking through the calculation of the distance 
between the solutions, which avoids the problem of the ideal solution pre-setting and avoids the interference of 
subjective factors, and its calculation process is relatively simple and easy to operate. In addition, the ORESTE 
method introduces adjustable parameters, which can be flexibly adapted to the decision-making preference, and 
at the same time, through the combination of weak and strong ranking mechanisms, it can more accurately reflect 
the relationship between the advantages and disadvantages of the solutions, which can significantly improve the 
evaluation strength.

The resilient supplier evaluation system constructed in this paper aims to assess the resilience and adaptability 
of suppliers in the face of unexpected events and risks. The system contains four first-level indicators: supplier 
capability, supplier resources, supplier strategy, and supplier resilience, and is underpinned by a number of second-
level indicators. To address the ambiguity and uncertainty of the qualitative indicators, this paper adopts the 
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Z-number characterization of the assessment information, and combines the improved Z-number distance measure 
and the ORESTE ranking method for multi-attribute decision making. The improved Z-number distance measure 
considers the impact of its reliability component on the information risk, while the improved ORESTE ranking 
method introduces strong and weak ranking, using the Borda assignment function, so as to more accurately assess 
the performance of the program. The method can effectively assess supplier resilience and provide more reliable 
decision support for supply chain management.

2. Vendor evaluation system that takes resilience into account
In supply chain management, supplier selection has a direct impact on cost, quality, delivery and service. Assessing 
supplier resilience requires a combination of multi-dimensional indicators: traditional indicators are usually 
statistically analyzed through questionnaire interviews; green indicators focus on environmental competitiveness 
and pollution control, etc.; and resilience indicators cover key dimensions such as robustness, responsiveness, 
cooperation and agility, in order to cope with the risk of supply chain disruption.

There are more evaluation indicators for suppliers of resilience, and in this paper, based on the literature, we 
have established the first-level indicators and their second-level indicators as shown below [3–6]:

(1) Supplier capabilities (C1): production capacity (C11, daily/monthly/yearly production), technological 
innovation capacity (C12, R&D investment/number of patents), quality control capacity (C13, quality 
incident rate/customer complaint rate).

(2) Supplier resources (C2): financial strength (C21, total assets/business revenue), human resources (C22, 
number/quality/stability of employees), logistics resources (C23, warehouse size/transport network).

(3) Supplier strategy (C3): risk management capability (C31, risk identification/response/risk resilience), 
flexible supply chain management capability (C32, inventory strategy/market response), sustainability 
strategy (C33, environmental protection measures/energy management).

(4) Supplier resilience (C4): robustness (C41, supply chain network structure/contingency planning), 
responsiveness (C42, response time/flexibility), co-operation (C43, willingness to co-operate/
effectiveness), agility (C44, production adjustment time), visibility (C45, transparency of information), 
risk mitigation (C46, early warning systems), excess inventory (C47, inventory turnover), Resilience (C48, 
speed of recovery/effectiveness).

3. Multi-attribute decision-making method based on Z-number-ORESTE
The multi-attribute decision-making method based on Z-number-ORESTE consists of two parts: the first part 

adopts the Z-number to process the toughness supplier evaluation information, proposes the improved Z-number 
distance measure to supplement the application of the distance measure to consider the effect of the reliability 
part of the Z-number on the risk of the information, and reduces the loss of the information by calculating 
the preference distance between the suppliers, which more accurately reflects the strengths and risks of the 
information, and at the same time, introduces the improved Z-number distance measure to better consider the risk 
preferences of decision makers. In the second part, by applying the improved Z-number distance measure, the 
ORESTE ranking method is used to rank the options.
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3.1. Z-number and its improved distance measure
3.1.1. Z-number
Z-number, consists of two parts: A and B. A denotes the range of possible values of the uncertain variable X, and 
B denotes the reliability of A. Z-number represents the superiority of the information by taking into account the 
randomness of the uncertain variable X and the reliability of the information. z-number is expressed as:

Xis(A,B) (1)

3.1.2. Improved Z-number distance measures
Z-number can effectively express the uncertainty of information and is widely used in multi-objective decision-
making problems. In this paper, combined with the preferred distance measure proposed by Shen et al., an 
improved Z-number distance measure is proposed [15]. The specific steps include:

(1) Suppose two Z-numbers Z1=(A1,B1) and Z2=(A2,B2). Calculation of affiliation degree

μAα(x)=αμA(x) (2)

where μA(x) is the affiliation function of the Z-number A and α is the exact value of the reliability part B of 
the Z-number. Using the value of the affiliation function of Zα, the degree of affiliation of each Zα at different 
values of x is calculated. 

(2) Define the improved Z-number distance measure Z1=(A1,B1) and Z2=(A2,B2) correspond to the potential 
probability expectation intervals EZ1=[a1,b1] and EZ2=(a2,b2), respectively.

(3) The improved Z-number distance measure D=(Z1,Z2) is calculated as follows:
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where d1 is the average distance between two Z-number expectation intervals; d2 is the integral distance of 
its affiliation function on the domain [0,1], and the affiliation functions of Zα1 and Zα2 are μZα1 and μZα2; d3 is the 
union distance of the affiliation functions, and c1 and c2 are the centroids of EZ1 and EZ2, respectively.

3.2. Z-number-ORESTE ordering
The ORESTE sequencing method is an effective multi-attribute decision-making method that achieves an 
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accurate sequencing of solutions through a combination of weak and strong sequencing. The improved ORESTE 
sorting method involves several structured steps for handling multi-attribute decision-making problems [19]. First, 
a decision problem is defined, consisting of m scenarios (objects) denoted as (Ai (1 < I ≤ m)), and n evaluation 
attributes. Experts are then invited to provide evaluation information for each scenario under each attribute using 
Z-numbers, which account for both the estimated performance and the confidence in that estimation. Based on 
the evaluation data, an improved Z-number distance measure is employed to calculate the distances between 
Z-numbers across different scenarios under the same attribute. These distance values reveal the differences in 
performance and provide critical input for subsequent stages, such as determining the weak ranking, constructing 
the Preference Intensity Relation (PIR) structure, and establishing the strong ranking. The distance of each 
scenario from the optimal one under the same attribute is also calculated to support this analysis. Following this, 
weak ranking is determined by assigning preference score values to each scenario, where a lower score indicates 
a higher rank. To further analyze preference relationships, the PIR structure is constructed by calculating the 
preference intensity between each pair of scenarios. This allows for an intuitive understanding of the relative 
advantages among alternatives. To align with human cognitive behavior in decision-making, non-differentiation 
and non-comparability thresholds are introduced. These thresholds ensure that scenarios perceived as indistinct or 
incomparable due to minor or ambiguous differences are treated accordingly in the model. The detailed formulas 
and calculation steps involved in this process are applied in sequence to achieve a structured, accurate, and human-
centered decision analysis.

The calculation steps and formulas are as follows:
(1) Calculate the preference intensity, average preference intensity, and net preference intensity of a program 

(object) relative to another program(object) under the attributes.

( ),i jT Z Z∆  (9)

( ) ( )1
,

,
n

i jk k
i j

T Z Z
T Z Z

n
=
∆

∆ =
∑

 (10)

( ) ( ) ( ), , ,net i j i j j iT Z Z T Z Z T Z Z∆ = ∆ −∆  (11)

where ∆T(Zi,Zj) denotes the preference strength of scheme Zi with respect to scheme Zj under a certain 
attribute; n is the total number of attributes; ∆T(Zi,Zj) is the average preference strength of scheme Zi with 
respect to scheme Zj; ∆T(Zi,Zj)k denotes the preference strength of scheme Zi with respect to Zj under the kth 
attribute.∆Tnet(Zi,Zj) denotes the net preference intensity of scheme Zi with respect to scheme Zj.

(2) Determine the undifferentiated threshold.

( ) ( )2 1

2
s sα α

δ
−

=  (12)

where α(s） is the score function. The no-difference threshold is used to determine the circumstances under 
which the programs(objects) are undifferentiated, and the programs(objects) are considered to be undifferentiated 
from each other when the absolute value of their net preference intensity is less than the no-different threshold.

(3) The incomparable threshold is obtained and calculated as follows:
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µ δ=  (13)

2
µσ ∆ +

=
 (14)

where ∆ is a variable related to the strength of net preference. The non-comparable threshold is used to 
determine the circumstances under which a program(object) is non-comparable.

(4) Preference thresholds are obtained and the program is determined by Equation (11):

 (15)

(5) Based on the preference thresholds and the non-comparable thresholds, the PIR relationships between the 
programs are established, i.e., the three relationships of preference, non-comparable and undifferentiated.

(6) Determine strong ordering. Based on the PIR relationship of the scheme (object), strong ordering is 
performed and the strong ordering result is obtained.

(7) Precise sorting. According to the PIR relationship, the scheme (object) is sorted, and the Borda assignment 
function is used to accurately sort the results of the strong sorting to get the final sorting value, the higher the 
Borda value, the more the scheme (object) is sorted forward.

 (16)

( ) 1

m
i ijj
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=
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4. Case study
An electronic enterprise mainly engaged in the production of smartphones, in the face of fierce competition in 
the market, fast product iteration, technical pressure, and other challenges, the need to choose from the supplier 
A1, A2, A3 in the best 1-2 suppliers for long-term co-operation. Supplier A1 is a large supplier, strong capacity, 
technological innovation and quality control excellence, resource-rich and high toughness, strong willingness to 
cooperate; supplier A2 is a medium-sized enterprises, capacity, innovation, quality control, resources and toughness 
are at a medium level, medium willingness to co-operate; supplier A3 is small in scale, capacity, innovation, quality 
control are weak, limited resources, toughness is weak, the willingness to co-operate in general. Specific steps are 
as follows:

(1) Table 1 shows the raw data of the enterprise’s evaluation of suppliers A1, A2, and A3.
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Table 1. Data from expert surveys

Norm A1 A2 A3

C11 (500,600,700) (400,600,600) (300,400,500)
C12 (0.6,0.7,0.8) (0.5,0.6,0.7) (0.4,0.5,0.6)
C13 (0.8,0.9,1.0) (0.7,0.8,0.9) (0.6,0.7,0.8)
C21 (1000,1200,1400) (800,1000,1200) (600,800,1000)
C22 (200,220,240) (150,170,190) (100,120,140)
C23 (10,12,14) (8,10,12) (6,8,10)
C31 (0.7,0.8,0.9) (0.6,0.7,0.8) (0.5,0.6,0.7)
C32 (0.6,0.7,0.8) (0.5,0.6,0.7) (0.4,0.5,0.6)
C33 (0.8,0.9,1.0) (0.7,0.8,0.9) (0.6,0.7,0.8)
C41 (0.5,0.6,0.7) (0.7,0.8,0.9) (0.6,0.7,0.8)
C42 (0.6,0.7,0.8) (0.5,0.6,0.7) (0.4,0.5,0.6)
C43 (0.8,0.9,1.0) (0.7,0.8,0.9) (0.6,0.7,0.8)
C44 (0.5,0.6,0.7) (0.4,0.5,0.6) (0.3,0.4,0.5)
C45 (0.6,0.7,0.8) (0.5,0.6,0.7) (0.4,0.5,0.6)
C46 (0.7,0.8,0.9) (0.6,0.7,0.8) (0.5,0.6,0.7)
C47 (0.8,0.9,1.0) (0.7,0.8,0.9) (0.6,0.7,0.8)
C48 (0.9,1.0,1.0) (0.8,0.9,1.0) 0.8,0.9)

(2) Table 2 shows the data and Z-number construction after standardization of suppliers A1, A2, and A3.

Table 2. Construction of standardized data and Z-numbers

Norm A1 A2 A3

C11 (0,0.33,0.67,0.9) (0,0.33,0.67,0.85) (0,0.33,0.67,0.8)

C12 (0.25,0.29,0.33,0.8) (0,0.17,0.33,0.8) (0,0.17,0.33,0.75)

C13 (0.33,0.37,0.42,0.95) (0.25,0.33,0.42,0.9) (0.25,0.33,0.42,0.85)

C21 (0.25,0.29,0.33,0.85) (0,0.17,0.33,0.75) (0.25,0.33,0.42,0.8)

C22 (0,0.33,0.67,0.9) (0,0.33,0.67,0.85) (0,0.33,0.67,0.85)

C23 (0,0.33,0.67,0.8) (0,0.33,0.67,0.8) (0,0.33,0.67,0.8)

C31 (0.25,0.29,0.33,0.85) (0,0.17,0.33,0.8) (0,0.17,0.33,0.75)

C32 (0.25,0.29,0.33,0.8) (0,0.17,0.33,0.75) (0,0.17,0.33,0.7)

C33 (0.33,0.37,0.42,0.95) (0.25,0.33,0,42,0.9) (0.25,0.33,0.42,0.85)

C41 (0,0.33,0.67,0.9) (0,0.17,0.33,0.85) (0,0.17,0.33,0.8)

C42 (0.25,0.29,0.33,0.85) (0,0.17,0.33,0.8) (0,0.17,0.33,0.75)

C43 (0.33,0.37,0.42,0.95) (0.25,0.33,0.42,0.9) (0.25,0.33,0.42,0.85)

C44 (0,0.33,0.67,0.9) (0,0.33,0.67,0.85) (0,0.33,0.67,0.8)

C45 (0.25,0.29,0.33,0.85) (0,0.17,0.33,0.8) (0,0.17,0.33,0.75)

C46 (0.25,0.29,0.33,0.8) (0,0.17,0.33,0.75) (0,0.17,0.33,0.7)

C47 (0.33,0.37,0.42,0.95) (0.25,0.33,0.42,0.9) (0.25,0.33,0.42,0.85)

C48 (0.33,0.37,0.42,0.95) (0.25,0.33,0.42,0.9) (0.25,0.33,0.42,0.85)
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(3) Table 3 shows the results of the combined evaluation of suppliers A1, A2, and A3. A comprehensive 
evaluation of suppliers A1, A2, and A3 is performed through Equation (2). 

Table 3. Comprehensive evaluation results

Object Potential probability expectation interval Combined fuzzy number Degree of affiliation (math.)

A1 0.75875 (0.74875,0.75875,0.76875) 0.75875

A2 0.67875 (0.67875,0.68875,0.69875) 0.68875

A3 0.63875 (0.63875,0.64875,0.65875) 0.64875

(4) Table 4 shows the comparative distances of suppliers A1, A2, and A3. Comparative distances of suppliers 
A1, A2, and A3 are calculated by Equations (3)–(8). 

Table 4. Results of the distance comparison among suppliers

Norm D(A1,A2) D(A1,A3) D(A2,A3)

C11 0.2585 0.32 0.305

C12 0.22 0.28 0.265

C13 0.205 0.26 0.245

C21 0.23 0.29 0.275

C22 0.245 0.305 0.29

C23 0.26 0.32 0.305

C31 0.22 0.28 0.265

C32 0.235 0.30 0.285

C33 0.205 0.26 0.245

C41 0.24 0.30 0.285

C42 0.235 0.30 0.285

C43 0.205 0.26 0.245

C44 0.25 0.31 0.295

C45 0.235 0.30 0.285

C46 0.22 0.28 0.265

C47 0.205 0.26 0.245

C48 0.21 0.27 0.255

(5) The distance between supplier A1 and other suppliers on most indicators is relatively small, yielding: 
supplier A1 > supplier A2 > supplier A3.

(6)The PIR structure of suppliers A1, A2, and A3 is obtained through Equation (9)–(11). Table 5 shows the 
preference intensity of suppliers A1, A2, and A3, and Table 6 shows the average preference intensity and net 
preference intensity of suppliers A1, A2, and A3.
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Table 5. Preference intensity

Norm A1&A2 A1&A3 A2&A3

C11 0.05 0.1 0.05

C12 0.04 0.08 0.04

C13 0.03 0.06 0.03

C21 0.04 0.08 0.04

C22 0.05 0.1 0.05

C23 0.06 0.12 0,06

C31 0.04 0.08 0.04

C32 0.05 0.1 0.05

C33 0.03 0.06 0.03

C41 0.04 0.08 0.04

C42 0.05 0.1 005

C43 0.03 0.06 0.03

C44 0.06 0.12 0.06

C45 0.05 0.1 0.05

C46 0.04 0.08 0.04

C47 0.03 0.06 0.03

C48 0.03 0.06 0.03

Table 6. Average preference intensity and net preference intensity

Z1 Z2 Z3

∆T(Z1,Zi) 0 -0.133 -0.6

∆T(Z2,Zi) 0.133 0 -0.533

∆T(Z3,Zi) 0.6 0.533 0

Z1 0 0.133 0.2

Z2 0.133 0 0.133

Z3 0.2 0.133 0

(7) The score functions α(0)=0, α(1)=1, ∆=0.6 are known and the undifferentiated threshold 
2 0.707

2
δ = ≈  is 

obtained through Equation (12).
(8) Using Equations (13)–(15), preference threshold μ=5, incomparable threshold

0.6 1 0.8
2

σ +
= = , and PNR 

structure of suppliers A1, A2, and A3, Table 7 shows the conclusions of the PNR relationships. 
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Table 7. The PIR relationship

Object Net preference intensity Judgment of relationship to threshold PNR relationship conclusion

A1&A2 0.133 0.133 < 0.707
0.133 < 0.8 No difference

A1&A3 0.6 0.6 < 0.707
0.6 < 0.8 No difference

A2&A3 0.533 0.533 < 0.707
0.533 < 0.8 No difference

(9) The strong ordering of suppliers A1, A2, and A3 is obtained through Equation (16): supplier A1 > supplier 
A2 (undifferentiated relationship, can be juxtaposed), supplier A1 > supplier A3, and supplier A2 > supplier A3 
(undifferentiated, can be juxtaposed). At the same time, through Equation (17), the above results are sorted using the 
Borda assignment function to obtain: the Borda value of Supplier A1 is 1.5, the Borda value of Supplier A2 is 1, and 
the Borda value of Supplier A3 is 0.5, which gives the final sorting result: Supplier A1 > Supplier A2 > Supplier A3.

(10) Based on the above results, the ranking results of suppliers are: Supplier A1 > Supplier A2 > Supplier A3. 
As a result, it is obtained that Supplier A1 is selected as the best partner for the following reasons:

(a) Supplier A1 has the highest overall affiliation (0.75875), indicating the best overall performance.
(b) Supplier A1’s net preference intensity relative to A2 and A3 are positive (0.133 and 0.6, respectively), 

and compared to the distance is smaller, the indicator advantage is outstanding.
(c) Supplier A1 has obvious advantages in toughness dimensions (e.g., robustness, etc.) and can 

effectively guarantee supply chain stability.
(d) All evaluation systems (e.g., PIR relationship, net preference intensity, etc.) verify that Supplier 

A1 is leading in production capacity, technological innovation, quality control, resources, strategic 
management, and resilience, which significantly reduces the risk of supply chain disruption.

In summary, Supplier A1 is the best choice to provide high-quality products and services to the enterprise, 
while enhancing the resilience and competitiveness of the supply chain. The final result is obtained: Supplier A1 is 
the best choice, supplier A2 is the next best, and supplier A3 is the last.

5. Conclusion
This paper proposes a resilient supplier evaluation method based on improved Z-number-ORESTE, which aims 
to effectively assess the resilience and adaptability of suppliers in the face of unexpected events and risks. The 
method evaluates the program(object) more accurately by constructing a multi-level evaluation index system 
containing supplier capabilities, resources, strategies, and resilience, and combining the improved Z-number 
distance measure and ORESTE ranking method for multi-attribute decision-making. Through case studies, this 
paper verifies the feasibility and effectiveness of the method. The results show that the method can effectively 
identify and select resilient suppliers and provide more reliable decision support for enterprise supply chain 
management. However, the method has some shortcomings, such as the strong dependence on experts in the 
ORESTE ranking method, as well as the fact that it is mainly applicable to decision-making problems with more 
qualitative indicators. Future research directions could include reducing the dependence on experts, integrating 
the method with other multi-attribute decision-making methods, and applying it to other fields to expand its 
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application scope. It is believed that as the research continues, the resilient supplier evaluation method based 
on improved Z-number-ORESTE will be further improved and play a greater role in the field of supply chain 
management.
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