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Abstract: Hotel review data analysis is a key way to understand customers’ opinions on hotel service quality and 
experience. By analyzing these comments, hotel managers can gain an in-depth understanding of customers’ needs and 
expectations, and thereby adjust strategies and improve service quality. This article will introduce how to conduct hotel 
review data analysis and how to transform this data into practical operational suggestions.
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1. Topic selection and relevance
1.1. Research background and motivation
Under the rapid development of the digital economy, user review data has become an increasingly important tool 
for evaluating hotel service quality and understanding customer preferences. Compared with traditional structured 
scores, consumers are more concerned with detailed information such as review content and travel scenarios—
especially under tag conditions such as “family trip,” “couple trip,” and “business trip,” where customer concerns 
vary significantly [1].

1.2. Research objective and key question
Based on 1,902 real user reviews from the Huazhu Club platform, this study focuses on identifying the key factors 
that influence customer review polarity (positive or negative) under different tag conditions. We aim to answer the 
following questions:

Do customers prioritize different elements such as room type and check-in time under different tags?
Which keywords or features are more likely to trigger positive or negative reviews depending on the tag?
How can we combine rating scores and review text to build a more accurate review classification mechanism?
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1.3. Data structure overview
The raw dataset includes key variables such as hotel name, user rating, room type, check-in time, tag, and review 
content. The data is generally clean and complete. The “user rating” is a structured field suitable for classification, 
while the “review content” is unstructured and will be analyzed using Jieba for Chinese word segmentation and 
keyword-based feature extraction.

1.4. Methodological overview
This study adopts a dual modeling framework:

(1) Score-based modeling: Reviews will be categorized into positive, neutral, or negative based on user rating 
thresholds;

(2) Text-based modeling: Keywords such as “satisfied,” “clean,” or “noisy” will be extracted and quantified to 
create frequency-based or sentiment-based variables.

Interaction with tag conditions will be explored to identify tag-specific influence patterns.

1.5. Python code example (Figure 1)

Figure 1. Python1

2. Variable selection and label construction
2.1. Data collection process
The dataset used in this study was obtained from the Wharton Research Data Services (WRDS) platform, 
specifically from the Compustat Fundamentals Annual database provided by Standard & Poor’s (https://wrds-
www.wharton.upenn.edu/pages/get-data/compustat/). This dataset includes a wide range of financial and firm-
level identifiers for publicly traded U.S. companies, such as GVKEY, CIK Number, CUSIP, fiscal year-end, stock 
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ticker symbols, and GICS industry classifications. The data was accessed through an institutional subscription for 
academic research purposes [2].

The motivation for using this dataset is to examine firm-level characteristics and financial performance over 
time, which are crucial for conducting corporate finance, governance, and environmental risk analysis.

2.2. Variable selection and label construction by Python
This study constructs the dependent and explanatory variables based on financial indicators related to firm risk 
exposure, profitability, and external shock events. Key variables are standardized, and interaction terms are 
introduced to improve interpretability and enable hypothesis testing.

2.2.1. Label variable construction: Stock volatility
The target variable Control_Stock_Return_Volatility measures annualized return fluctuation and is used as a 
continuous outcome variable in regression models. No transformation is applied.

2.2.2. Explanatory variable construction and standardization
We standardize Control_Leverage_Ratio and Control_Firm_Size, then construct an interaction term with Disaster_
Year. Below is the full Python code used for preprocessing and regression (Figure 2). This code outputs regression 
results and can be visually presented in the report as a screenshot. The variables in Table 1 form the backbone of 
the regression analysis.

Figure 2. Python2
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Table 1. Core variables and their roles

Variable name Role Description

Control_Stock_Return_Volatility Dependent Annual return volatility

Leverage_z Independent Standardized capital structure (leverage)

FirmSize_z Independent Standardized firm size

Disaster_Year Moderator 1 if firm experienced disaster shock that year

Control_ROA Control variable Profitability control

2.3. Variable selection and label construction by KNIME
In KNIME, we prepare variables for modeling by selecting relevant fields and applying standardization operations 
via Math Formula. The cleaned dataset newdata.csv already uses English underscore-formatted names, which 
avoids compatibility issues [3].

2.3.1. Field selection and preprocessing description
The following fields are retained for analysis:

Control_Stock_Return_Volatility
Control_Leverage_Ratio
Control_Firm_Size
Disaster_Year
Control_ROA
Company_Name
Ticker_Symbol
Data_Year___Fiscal
Control_Tobin_s_q
Control_Annual_Return
Standardization is performed using Math Formula nodes:
Leverage_z: Z-score of Control_Leverage_Ratio
FirmSize_z: Z-score of Control_Firm_Size
These variables are passed to downstream modeling components.

2.3.2. KNIME workflow overview and visualization
The entire KNIME process for this study includes importing data, filtering necessary fields, standardizing 
variables, and passing results to modeling components. The workflow consists of the following core steps:
File Reader imports the cleaned dataset newdata.csv
Column Filter selects 10 core fields for analysis
Math Formula nodes compute standardized values (Leverage_z, FirmSize_z)

The standardized dataset is ready for regression modeling (Table 2).
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Table 2. KNIME core fields for modeling

Field name Role

Control_Stock_Return_Volatility Regression Target

Control_Leverage_Ratio Independent Variable

Control_Firm_Size Independent Variable

Disaster_Year Moderator

Control_ROA Control Variable

3. Data cleaning and preprocessing
3.1. Data cleaning and preprocessing using Python
This section describes how we clean and prepare the dataset for modeling in Python. This includes handling 
missing values, checking for outliers, and confirming the final structure [4]. A well-cleaned dataset is essential for 
ensuring model robustness and reducing noise from anomalous data entries. These steps help reduce threats to 
internal validity and improve overall statistical inference.

3.1.1. Missing value handling
We drop any observations with missing values in the core modeling variables. The operation ensures data 
completeness and modeling stability:
Removing incomplete records prevents bias and estimation errors in regression modeling. Since imputation can 
introduce bias in small datasets, deletion was selected for simplicity and clarity.

3.1.2. Outlier detection and handling
We use a simple IQR rule to identify and optionally remove outliers in continuous variables:
This step helps reduce skewness in distributions and stabilizes regression estimates. Proper outlier management 
ensures that extreme values do not disproportionately influence the results, especially in small or moderate sample 
sizes.

3.2. Data cleaning and preprocessing using KNIME
In KNIME, the data is cleaned using a similar process to that in Python.

3.2.1. Missing value removal
We use the Missing Value node to remove rows containing null values in five core variables:

Control_Stock_Return_Volatility
Control_Leverage_Ratio
Control_Firm_Size
Disaster_Year
Control_ROA
Missing entries are deleted directly using the “Remove Row” strategy in the Column Settings tab. This 

guarantees completeness in subsequent modeling and avoids imputation bias.
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3.2.2. Outlier filtering by empirical thresholds
To avoid complexity, we apply a simplified method for outlier exclusion [5]. The Row Filter node is used to retain 
values within a manually defined acceptable range based on the distribution from Python describe outputs.

Each variable is filtered with a dedicated Row Filter node. For example, the configuration for Control_
Leverage_Ratio is shown in Figure 3 below.

Figure 3. Row Filter configuration for Control_Leverage_Ratio

This strategy ensures interpretability and simplicity without sacrificing data reliability.

3.2.3. Output and workflow overview
After cleaning, the final dataset is exported using CSV Writer to the file cleaned_model_data.csv. The entire 
workflow structure is presented below for reproducibility (Figure 4).

Figure 4. KNIME workflow for data cleaning

This workflow achieves consistent preprocessing and prepares the data for downstream modeling tasks, 
maintaining alignment with the Python-based approach.
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4. Data modeling and visualization
4.1. Modeling using Python
4.1.1. Modeling objective and variable recap
In this section, we conduct an econometric analysis to explore how firm-level financial characteristics—
specifically capital structure, firm size, and profitability—interact with disaster shocks to influence stock return
volatility [6]. Using the cleaned dataset cleaned_model_data.csv from section 3, we designate Control_Stock_
Return_Volatility as the dependent variable. This variable captures the annualized standard deviation of stock
returns and is commonly used to proxy firm-level risk.

The explanatory variables include standardized leverage (Leverage_z), standardized firm size (FirmSize_z), 
an indicator variable for whether the year involved a disaster (Disaster_Year), and return on assets (Control_ROA). 
We are particularly focused on testing whether the relationship between leverage and volatility is moderated by 
disaster year status, forming the basis for an interaction effect.

4.1.2. OLS regression modeling
To quantify these relationships, we estimate an Ordinary Least Squares (OLS) regression model using the Python 
statsmodels library (Figure 5). The model includes main effects and a cross-product interaction term between 
leverage and disaster status.

Figure 5. Python OLS regression output

From the regression summary, we observe that the interaction term between leverage and disaster year is 
positive and significant, suggesting that firms with higher leverage experience greater volatility in disaster years [7]. 
Other variables like firm size show expected negative correlations with volatility, reinforcing the risk-buffering 
role of large firms.

4.2. Modeling using KNIME
To validate the findings from Python, we replicate the model in KNIME. The process starts with importing 
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cleaned_model_data.csv using the File Reader node. Then, a Column Filter node retains only the required fields:
Leverage_z
FirmSize_z
Disaster_Year
Control_ROA
Interaction
Control_Stock_Return_Volatility
Figure 6 provides a transparent view of the modeling pipeline in KNIME. It confirms that our Python logic 

has been fully translated into a node-based system, allowing for replication and extension without coding.

Figure 6. KNIME workflow overview

4.3. Summary of findings
The regression analysis confirms that leverage significantly contributes to volatility and that this effect is magnified 
during disaster periods. The interaction term is robust and positive across Python and KNIME. Additionally:

Larger firms (FirmSize_z) are associated with lower volatility;
Higher profitability (Control_ROA) mildly reduces volatility;
Visual tools confirm variable relationships and support model assumptions.
The use of both traditional output and enhanced visualization improves transparency and offers an intuitive 

understanding of the relationships [8]. The inclusion of correlation heatmaps and disaster year-specific bar charts 
provides further evidence of contextual influence on firm risk.

In conclusion, visualizations serve not only to confirm model findings but also to communicate insights 
clearly to stakeholders. These results form the basis for management and policy recommendations in section 5.

5. Data modeling and analysis
5.1. Modeling using Python
5.1.1. Random Forest Regression modeling
In this section, we apply a Random Forest Regressor to model the relationship between firm characteristics and
stock return volatility. Using the cleaned dataset cleaned_model_data.csv, we standardize leverage and firm size
variables to improve model performance. The model includes four predictors: standardized leverage (Leverage_z),
standardized firm size (FirmSize_z), disaster year indicator (Disaster_Year), and return on assets (Control_ROA).
The dependent variable is stock return volatility (Control_Stock_Return_Volatility).

Model evaluation and interpretation: The Random Forest model yields a Root Mean Squared Error (RMSE) 
of 0.0402, indicating high precision in predicting stock return volatility. The R-squared (R2) value is 0.2822, 
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implying that approximately 28% of the variation in volatility is explained by the selected firm-level features. 
Although this value is moderate, it reflects the inherent complexity and unpredictability of financial volatility, 
especially when external macroeconomic shocks are present [9].

Feature importance analysis: The feature ranking reveals that Leverage_z is the most influential variable, 
with an importance score of 0.3604. This aligns with financial theory suggesting that highly leveraged firms are 
more vulnerable to volatility, particularly under stress scenarios. Control_ROA (0.2954) and FirmSize_z (0.2896) 
also hold considerable weight, reinforcing the roles of profitability and firm scale in mitigating or amplifying risk 
exposure.

On the other hand, Disaster_Year contributes relatively little (0.0545), hinting that the binary classification of 
a disaster year, though relevant, does not dominate risk outcomes when firm fundamentals are properly controlled 
for. This observation encourages further exploration into more granular or continuous metrics of macroeconomic 
shocks.

Critical reflection: While Random Forest models are often viewed as black-box techniques, their ability to 
model non-linear relationships and interactions without strong parametric assumptions is particularly beneficial in 
capturing the dynamics between financial structure and volatility. However, interpretability is an acknowledged 
trade-off. The current model performs reasonably well but leaves room for refinement. Incorporating additional 
variables—such as governance factors, market conditions, or investor sentiment—could help enhance predictive 
power.

5.1.2. Logistic regression classification
To further understand the relationship between firm attributes and the likelihood of experiencing high return 
volatility, we construct a binary classification model using logistic regression. We transform the continuous 
volatility variable into a binary indicator, where firms above the median volatility are labeled as “high volatility” (1) 
and others as “low volatility” (0).

This approach enables us to explore not only which factors influence volatility levels but also which are 
predictive of crossing a critical risk threshold.

 The logistic regression model achieved an accuracy of 68%, which is modest but provides useful 
discriminatory power for a simple linear classifier. The precision for the “high volatility” class is 72.7%, while its 
recall is 61.5%, indicating that the model is slightly better at identifying true positives than false negatives.

The confusion matrix shows 9 true negatives and 8 true positives, with 3 false positives and 5 false negatives. 
While the model is not perfect, it captures relevant patterns and provides a useful baseline against which more 
complex classifiers can be evaluated.

Logistic regression offers interpretability and simplicity, making it an appropriate baseline model. However, 
it may underperform when the decision boundary is non-linear or complex interactions exist. Future work could 
involve comparing logistic regression with more advanced classifiers like Gradient Boosting Machines or Neural 
Networks [10].

5.1.3. Model evaluation and robustness check 
In this section, we conduct a series of statistical tests to evaluate the performance, validity, and robustness of 
our regression and classification models. These diagnostic tests include coefficient significance analysis, model 
robustness checks, residual diagnostics, heteroskedasticity and multicollinearity detection, and heterogeneity 
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verification through interaction terms and subgroup analysis. All analyses are implemented using Python.

5.1.4. Decision tree classification model on financial return level
5.1.4.1. Target and feature selection
To extend the application of classification models beyond environmental variables, this section applies a decision 
tree classifier to a corporate finance dataset. The objective is to categorize firms based on their annual return 
levels. Using the dataset newdata.csv, we select Control_Annual_Return as the classification target. As this is a 
continuous variable, we discretize it into tertiles representing Low, Medium, and High return categories using 
quantile-based binning (pd.qcut).

The selected features include:
Control_Stock_Return_Volatility
Control_Leverage_Ratio
Control_Firm_Size
Control_ROA
Control_Tobin_s_q
These variables reflect risk profile, capital structure, size, profitability, and market valuation—factors 

commonly used in empirical finance to explain performance variation.

5.1.4.2. Model construction and training
This decision tree allows us to interpret how financial indicators such as ROA, volatility, or leverage relate to firm 
performance categorization. For instance, a high ROA combined with low volatility may signal a consistently 
profitable firm classified as High return.

5.1.4.3. Model prediction and evaluation
Evaluation metrics such as precision, recall, and F1-score indicate the classifier’s ability to distinguish among 
Low, Medium, and High return firms. However, the performance is relatively modest. The overall accuracy of the 
model is 39%, and macro-averaged F1-score is 0.38, suggesting limited generalization.

The confusion matrix reveals that:
The model correctly classifies 42 out of 79 High-return firms, but misclassifies 20 as Low and 17 as Medium.
Among Low-return firms, only 34 out of 79 are correctly identified, while the remainder are often predicted 

as High (36) or Medium (9).
The Medium-return category performs the worst, with only 16 out of 78 correctly classified.
This outcome implies that the current decision tree struggles to establish clear boundaries, especially for the 

Medium category, likely due to overlapping financial characteristics across return levels. The imbalance in feature 
informativeness or non-linear decision boundaries may be contributing factors.

Despite these limitations, the model structure highlights the roles of ROA, leverage, and volatility in firm 
return classification. Further improvements could involve ensemble techniques such as Random Forests or 
boosting to better capture interactions and reduce misclassification rates.

This application demonstrates the versatility of decision trees in modeling not only environmental outcomes 
but also core financial performance categories. These models can inform investor screening, risk management, and 
policy targeting in corporate finance contexts.
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5.2. Modeling using KNIME
To ensure smooth implementation within KNIME while maintaining interpretability, we adopted a regression task 
using the Regression Tree Learner and Regression Tree Predictor nodes. The same cleaned dataset used in the 
Python section (cleaned_model_data.csv) was imported into KNIME via the File Reader node [11].

The target variable was Control_Stock_Return_Volatility, and the input features included Control_Leverage_
Ratio, Control_Firm_Size, Disaster_Year, and Control_ROA. The data was filtered using the Column Filter node 
to remove non-numeric or identifier columns, then split using the Partitioning node (80/20 split).

The Regression Tree Learner was configured with the default maximum depth and standard splitting criteria. 
Once trained on the 80% subset, the Regression Tree Predictor node was applied to the testing set to generate out-
of-sample predictions. These predictions were then evaluated using the Numeric Scorer node, which output key 
metrics such as RMSE and R2.

To visualize the relationship between actual and predicted values directly within KNIME, we used the Scatter 
Plot node attached to the output of the Regression Tree Predictor node. Since KNIME only allows two columns 
from the same table to be visualized at once, we re-routed the Partitioning node’s test set output directly into the 
Regression Tree Predictor, ensuring that the predicted and actual values were available in the same resulting table.

By doing this, we were able to configure the Scatter Plot node with:
X-axis: Control_Stock_Return_Volatility (actual value)
Y-axis: Prediction (Control_Stock_Return_Volatility)
This enabled us to generate the predicted vs. actual scatter plot entirely within KNIME, avoiding the need for

export or external visualization tools.
Workflow steps (Figure 7):

File Reader → Column Filter → Partitioning → Joiner
Regression Tree Learner → Regression Tree Predictor
Numeric Scorer + Scatter Plot

Figure 7. Regression Tree workflow in KNIME

Model results (Figure 8):
RMSE ≈ 0.0362
R2 ≈ 0.2445
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Figure 8. Model results

Regression Tree models offer an intuitive and interpretable method for capturing non-linear relationships in 
structured tabular data. Despite their simplicity, they often suffer from high variance, making them sensitive to 
data partitions and prone to overfitting.

In this implementation, the decision rules derived by the Regression Tree provided insight into how 
combinations of financial characteristics influence firm-level risk. However, the moderate performance metrics 
and visual inspection of the scatter plot suggest that a single tree may be insufficient to capture the complexity 
of return volatility. This reaffirms the earlier motivation for using ensemble methods such as Random Forest 
in Python. Nevertheless, the ease of implementation and clarity of model logic make Regression Trees a useful 
pedagogical and exploratory tool.

The scatter plot (Figure 9) reveals a weak alignment between predicted and actual values, with points spread 
widely and lacking a clear diagonal trend. This visual evidence supports the numeric results, particularly the 
negative R2 value, which indicates that the regression model performs worse than a simple mean-based predictor. 
The result highlights the limited explanatory power of the regression tree in this context and underscores the 
challenge of modeling financial volatility with basic firm-level inputs alone.

Figure 9. Predicted vs. actual plot from KNIME Regression Tree model
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5.3. Data modeling and analysis using R
5.3.1. Linear regression modeling
We first apply a linear regression model to explore the influence of selected predictors on the dependent variable 
Control_Stock_Return_Volatility, representing firm-level wastewater discharge intensity [12]. The independent 
variables include Control_Firm_Size, Control_ROA, Control_Leverage_Ratio, and Disaster_Year.

Model interpretation (OLS): The linear regression model applied to the new dataset evaluates how firm 
fundamentals affect their stock return volatility. The regression results (see summary output in Figure 10) reveal:

The overall model is statistically insignificant (F(4,117) = 1.825, P = 0.1286), suggesting the explanatory 
power of the selected variables is limited.

All predictors (Control_Firm_Size, Control_ROA, Control_Leverage_Ratio, Disaster_Year) show no 
significance at conventional thresholds (P > 0.05).

The adjusted R2 = 0.0266 indicates extremely weak explanatory power.
This implies that none of the included firm-level variables meaningfully explain volatility in this sample. 

Potential reasons include missing variables, measurement error, or high noise in the dependent variable.

Figure 10. OLS Regression summary

Model diagnostics:
The residual histogram approximates a bell shape but is slightly skewed right (Figure 11).

Figure 11. Histogram of residuals
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The QQ plot reveals mild deviation from normality at both tails (Figure 12).

Figure 12. QQ plot of residuals

Multicollinearity check via VIF indicates no serious concern, with all VIFs in Figure 13.

Figure 13. VIF table for multicollinearity

5.3.2. Decision tree classification
To classify firms into “High” and “Low” stock volatility categories, we use a classification tree based on rpart. The 
response variable is binarized from Control_Stock_Return_Volatility by median split.

The updated decision tree (Figure 14) shows that Control_Leverage_Ratio is the first splitting feature, 
followed by Control_Firm_Size and Control_ROA. Firms with higher leverage and lower profitability are more 
likely to be classified in the “High Volatility” category.

The tree begins with a split on Control_Leverage_Ratio ≥ 0.12 — firms with high leverage are more likely 
to fall into the “Low” category. Among those with low leverage, Control_Firm_Size, Control_ROA, and further 
splits on leverage and size help differentiate volatility levels.

This decision tree reveals a more nuanced structure than the previous dataset. It begins with a split on 
Control_Leverage_Ratio, suggesting this variable has the strongest initial classification power. Subsequent 
branches involve Control_Firm_Size and Control_ROA, forming conditional rules that categorize volatility. For 
example, firms with high leverage and small size are more likely to be classified as “High” volatility, while those 
with low leverage and strong ROA fall into the “Low” category.
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Figure 14. Decision tree result

5.3.3. Clustering analysis 
The clustering analysis reveals three main financial patterns among firms (Figure 15). Cluster 1 (red) groups low-
ROA, low-leverage firms, possibly indicating conservative or underperforming companies. Cluster 2 (green) 
features moderate ROA and relatively high leverage. Cluster 3 (blue) comprises firms with moderate financial 
profiles, indicating a balanced risk-return trade-off.

Figure 15. K-means clustering visualization
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6. Conclusion
This study explored the relationship between firm-level financial characteristics and stock return volatility using 
a combination of supervised and unsupervised learning techniques implemented in both Python and KNIME. Our 
results underscore several key findings:

First, through the Random Forest regression model in Python, we found that leverage, profitability, and 
firm size are significant predictors of volatility. The ensemble model captured non-linear effects and interactions, 
with leverage emerging as the most influential factor. However, the moderate R2 value suggests that while firm 
fundamentals matter, volatility is also driven by other external factors not included in the current model.

Second, logistic regression analysis indicated that while firm attributes moderately predict whether a firm 
experiences high volatility, classification performance remains limited with a linear approach. This justifies the 
future application of more complex classifiers or hybrid models.

Third, the KNIME-based Regression Tree model, though visually interpretable, underperformed relative to 
the Python implementation. The negative R2 value reflects the model’s inability to effectively capture underlying 
relationships, highlighting the trade-off between simplicity and predictive strength.

Finally, the unsupervised K-Means clustering (supported by PCA) provided exploratory insights into latent 
structures within the data. While clustering revealed meaningful groupings, further interpretation is needed to 
validate economic relevance.

In summary, this project demonstrates the value of integrating machine learning techniques across platforms 
for financial risk modeling. It highlights both the potential and limitations of current approaches and suggests 
directions for future research—such as incorporating temporal variables, macroeconomic indices, or alternative 
firm-level indicators—to enhance predictive power and policy relevance.
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