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Abstract: With the advent of the era of big data, the exponential growth of data generation has provided unprecedented 
opportunities for innovation and insight in various fields. However, increasing privacy and security concerns and the 
existence of the phenomenon of “data silos” limit the collaborative utilization of data. This paper systematically discusses 
the technological progress of federated learning, including its basic framework, model optimization, communication 
efficiency improvement, privacy protection mechanism, and integration with other technologies. It then analyzes the broad 
applications of federated learning in healthcare, the Internet of Things, Internet of Vehicles, smart cities, and financial 
services, and summarizes its challenges in data heterogeneity, communication overhead, privacy protection, scalability, and 
security. Finally, this paper looks forward to the future development direction of federated learning and proposes potential 
research paths in efficient algorithm design, privacy protection mechanism optimization, heterogeneous data processing, 
and cross-industry collaboration.
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1. Introduction
In the era of big data, the exponential growth of data generation has brought unprecedented opportunities for 
innovation and insight across all fields. However, this surge in data has also heightened privacy and security 
concerns. Many organizations face the problem of “data silos,” where data is dispersed and stored across different 
entities or jurisdictions, limiting its value for use in collaborative analytics. This data silos often stem from 
regulatory frameworks such as the General Data Protection Regulation (GDPR) and growing concerns about 
individual privacy rights, which collectively limit the free exchange [1,2] of sensitive information. In this context, 
how to realize the efficient use of data while protecting privacy has become an important direction of current 
research.

Federated learning emerged as a transformative approach to machine learning. It is a distributed machine 
learning framework designed to train models collaboratively through local datasets on multiple decentralized 
devices or servers. Unlike traditional centralized approaches, federated learning ensures that the raw data always 
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remains on the local device, with only model updates (such as gradients or parameters) shared to a central server 
for aggregation. This architecture minimizes privacy risks while enabling efficient model training [3]. In addition, 
federated learning incorporates secure aggregation technology that enables model updates to be merged without 
exposing the contributions of a single participant [4].

This article aims to explore the technological advances, application scenarios, and challenges of federated 
learning. By analyzing the applications of federated learning in healthcare, recommendation systems, IoT 
environments, and generative modeling, this paper demonstrates the potential of federated learning to drive data-
driven innovation while protecting privacy. In addition, the unsolved challenges of federated learning in system 
scalability, communication efficiency, and vulnerability to adversarial attacks will be discussed [1–3].

2. Technical advances in federated learning
2.1. Basic framework of federal learning
Federated learning is a distributed machine learning paradigm that aims to train models collaboratively through 
decentralized devices while protecting data privacy. The typical architecture of federated learning revolves around 
the federated averaging (FedAvg) algorithm proposed by Google, and its main flow consists of the following steps:

Local training: Each client trains the local model on its private data set based on global model parameters 
received from a central server.

Model upload: After local training is complete, the client sends its model updates (such as gradients or 
weights) to a central server.

Aggregate updates: The central server aggregates model updates from the clients through techniques such as 
weighted averaging and updates the global model, which is then redistributed to all clients.

This iterative process continues until the model converges. The framework ensures that the original data 
always remains on the local device, thus effectively addressing privacy concerns and data silos.

2.2. Direction of technology development
2.2.1. Model optimization
Improvements to FedAvg algorithm:

Given the limitations of FedAvg on non-independent co-distributed (non-IID) data, improved algorithms such 
as FedProx and FedUB are proposed. By introducing update bias into the loss function, FedUB makes the local 
and global optimal solutions more consistent, thus improving convergence and generalization [5,6].

Techniques such as adaptive data sampling (such as FAST) better approximate global optimal solutions by 
adjusting local training strategies and accelerate convergence in heterogeneous environments [7].

Optimization for heterogeneous data:
Methods such as HeteroFair introduce fairness constraints into the loss function and mitigate bias caused by 

non-independently homo distribution data by reweighting aggregation [6].
Non-aggregative methods such as FedAF avoid client drift by leveraging peer knowledge between clients 

rather than direct aggregation and perform better in data environments with skewed labels or features [8].

2.2.2. Communication efficiency
Model compression techniques:

Techniques such as pruning, quantification, and knowledge distillation are widely used to reduce 
communication overhead while maintaining model performance [9]. For example, FedSQ combines sparsity and 
quantization techniques and introduces an error compensation mechanism to maintain model performance while 
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achieving high compressibility [10].
Gradient compression:
Gradient sparsity and coding methods such as Wyner-Ziv coding, are used to reduce bandwidth requirements 

during the model update process while striking a balance between accuracy and communication costs [11]. Over-
the-air federated learning, combined with gradient compression, has also emerged as a promising solution in 
bandwidth-constrained environments such as wireless networks [12].

2.2.3. Privacy protection
Differential privacy (DP):

Differential privacy technology ensures privacy protection while maintaining model utility by adding 
calibration noise before model updates. These methods are already widely used in fields such as healthcare and the 
Internet of Things [13].

Homomorphic encryption (HE) and secure multi-party computation (SMPC):
Homomorphic encryption allows computations to be performed directly on encrypted data without 

decryption; Secure multi-party computing ensures that collaborative computing between multiple parties is secure. 
These techniques are increasingly used in privacy-sensitive fields such as medical diagnostics and financial 
analysis [13].

2.2.4. Personalized federal learning
Personalized model training:

Personalized federated learning frameworks such as SPIDER optimized the neural network structure for each 
client to accommodate the data distribution of heterogeneous clients through Neural Architecture Search (NAS) 
methods [14].

Metrics-based fuzzification techniques, such as d-privacy, enhance personalization in diverse user populations 
while protecting privacy [15].

2.3. Integration with other technologies
Blockchain integration: Blockchain-based frameworks such as BFLPP decentralize verification of updates 
through smart contracts and committee consensus mechanisms, enhancing the credibility of federated learning and 
enabling secure aggregation without a central server [14].

Reinforcement learning (RL): Reinforcement learning is integrated into federated learning to optimize 
resource allocation, especially in energy-constrained environments such as IoT networks and satellite systems, 
improving energy efficiency and model performance [15].

3. Applications and challenges of federated learning
3.1. Applications of federated learning
Federated learning has been widely used in many fields because of its ability to realize collaborative model 
training while protecting data privacy. Here are some of the key application areas:

(1) Medical field
Federal learning is widely used in healthcare to address data privacy regulations and data silos. For 
example, Federated learning enables hospitals and institutions to collaborate on training models for 
disease prediction, diagnosis, and treatment planning without sharing sensitive patient data. A case in 
point is the use of the federal network HONEUR, which supports clinical data analysis across multiple 
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hospitals while ensuring local data governance [1].
(2) Internet of Vehicles (IoV)

In the field of IoV, federated learning is advancing the development of intelligent transportation systems 
by supporting collaborative training models between vehicles and edge devices. These models can be used 
for traffic prediction, autonomous driving, and safety applications while avoiding exposure of raw sensor 
data.

(3) Smart cities and Internet of Things (IoT) systems
Federal learning plays an important role in smart city infrastructure, supporting decentralized learning 
for applications such as energy management (such as smart grids), public safety (such as surveillance 
systems), and urban planning (such as traffic flow optimization). These systems take advantage of 
federated learning’s ability to process locally generated data on edge devices while maintaining privacy. 
In an IoT environment, federated learning reduces network overhead and enhances system scalability by 
aggregating knowledge of distributed sensors or devices.

(4) Financial services
Federal learning has seen increasing use in fraud detection, credit scoring, and personalized financial 
services. It enables banks and financial institutions to collaborate on training models without sharing 
sensitive customer data.

3.2. Challenges of federal learning
Although federated learning shows great potential in multiple areas, it still faces numerous challenges in 
technology and practice:

(1) Data heterogeneity
A major challenge in federated learning is dealing with data that is not independently co-distributed (non-
IID) between clients. Differences in data distribution can lead to model bias or slower convergence. To 
address this, advanced optimization techniques such as adaptive aggregation or personalized federated 
learning strategies for individual client data need to be employed.

(2) Communication overhead
The iterative nature of federated learning results in a frequent exchange of model updates between clients 
and central servers, introducing significant communication costs. Techniques such as model compression, 
gradient sparsity, and over-the-air computing have been proposed to mitigate this problem but remain an 
active area of research.

(3) Privacy concerns
Although federated learning improves privacy by keeping raw data on local devices, it remains vulnerable 
to threats such as model inversion attacks or member inference attacks. Techniques such as differential 
privacy, homomorphic encryption, and secure multi-party computing can enhance privacy protection but 
often require trade-offs between model accuracy and computational efficiency [1].

(4) Scalability
When extending federated learning to a large number of clients with different computing power, there 
are problems such as resource allocation, fault tolerance, and efficient aggregation. Techniques such as 
hierarchical federated learning (such as using edge servers as intermediaries) are being explored but still 
need to be further optimized.

(5) Security threats
Federated learning systems are vulnerable to adversarial attacks such as poisoning attacks (malicious 
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updates) or Byzantine failures (unreliable clients). Robust aggregation methods such as Krum or Trimmed 
Mean are designed to mitigate these risks but generally add computational complexity.

(6) Have regulatory compliance
While federal learning addresses many privacy concerns, there are still regional differences in regulatory 
frameworks to contend with when deployed globally. Ensuring compliance with laws and regulations 
such as GDPR or HIPAA requires incorporating legal considerations into the design of federal systems.

4. Future directions
Federated learning’s technical development direction is mainly focused on improving algorithm efficiency, 
enhancing privacy protection mechanisms, and better dealing with heterogeneous data problems. Efficient 
algorithm design is the focus of future research, especially in resource-constrained environments such as edge 
computing and the Internet of Things. Lightweight design and energy saving (LDES) algorithms significantly 
reduce energy consumption through sparse or binary neural networks, while methods such as selective 
model aggregation (SAM) strike a balance between communication efficiency and model performance by 
probabilistically selecting clients to participate in model updates. In terms of privacy protection, although 
technologies such as differential privacy (DP) and homomorphic encryption (HE) have been widely used, the 
risk of data leakage in model updating still needs to be further addressed. Future research should develop hybrid 
privacy protection frameworks that integrate techniques such as HE, DP, and secure multi-party computing (SMPC) 
to address diverse threat models while improving their efficiency in real-time applications.

In the direction of application development, the potential of federated learning is not limited to existing fields 
such as healthcare, the Internet of Things, and autonomous driving but can be further extended to scenarios such 
as video analytics, intrusion detection systems (IDS), and 6G networks. In addition, cross-industry collaboration 
brings new opportunities for federated learning, such as collaborative models in healthcare and finance that can 
use financial data to predict health risks or personalize financial planning through health data. A federal learning 
framework incorporating blockchain technology also enables trust-free collaboration within the IoT ecosystem, 
ensuring secure model aggregation.

5. Conclusion
This paper systematically reviews the technological progress, application scenarios, and challenges of federated 
learning. At the technical level, federated learning provides innovative solutions for distributed machine learning 
through efficient algorithm design, communication optimization, and privacy protection mechanisms while 
showing potential in dealing with non-IID data and heterogeneous environments. At the application level, 
federated learning has been widely used in the fields of healthcare, the Internet of Things, the Internet of Vehicles, 
etc., promoting data-driven innovation. However, federated learning still faces issues such as data heterogeneity, 
communication overhead, privacy protection tradeoffs, and security threats. Future research should focus on 
efficient algorithm design, development of hybrid privacy protection frameworks, and optimization of dynamic 
aggregation strategies while exploring cross-industry collaboration and emerging application scenarios.
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