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Abstract: Breast cancer is the most common malignant tumor among women worldwide, with its incidence and mortality 
ranking first among all cancers. Early diagnosis and treatment significantly improve prognosis and reduce disease-related 
mortality. Chest computed tomography (CT), a routine examination for physical assessments and hospitalized patients, can 
screen for the presence of breast nodules and provide an initial assessment of malignancy risk. In recent years, artificial 
intelligence (AI) has advanced rapidly in the medical field. Studies have demonstrated that the sensitivity and accuracy of 
chest CT in diagnosing breast cancer are enhanced through the application of AI methods. This article explores the research 
progress in breast cancer diagnosis utilizing artificial intelligence based on chest CT examinations.
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1. Introduction
Breast cancer is the most prevalent malignancy in women. According to the American Cancer Society, nearly 
300,000 new cases of invasive breast cancer and more than 50,000 diagnoses of ductal carcinoma in situ are 
expected in 2023, with over 43,000 deaths attributed to breast cancer in the United States alone. While most breast 
cancers are detected through mammograms or ultrasounds, they can also be identified incidentally during other 
diagnostic tests. Chest computed tomography (CT) examinations, which routinely include the breast area, can 
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detect incidental breast lesions in up to 7% of scans, with 24% to 48% of these lesions ultimately diagnosed as 
breast cancer [1].

Early diagnosis and treatment are widely acknowledged as critical for improving the prognosis of breast 
cancer patients [2]. Therefore, the potential for incidental breast cancer detection during chest CT examinations 
should not be overlooked [3]. With ongoing advancements, artificial intelligence is increasingly being applied to 
various aspects of medical diagnosis and treatment, reflecting both societal progress and technological innovation. 
This paper reviews the efficacy of chest CT in breast cancer diagnosis as evaluated in previous studies and 
examines the research progress of artificial intelligence in enhancing chest CT-based breast cancer diagnosis.

2. The value of chest CT in breast cancer diagnosis
Over the past decade, the demand for chest CT scans has grown exponentially, covering a wide range of 
indications. Chest CT scans include all or part of the breast, making them a potential modality for detecting new 
breast lesions. However, breast lesions incidentally identified on CT scans are often overlooked, inadequately 
described, or occasionally misdiagnosed. Critical features for accurate assessment of breast lesions on CT include 
margins, morphology, enhancement patterns, density, and associated findings. Notably, edge spiculation, irregular 
morphology, and enhancement patterns are highly predictive of malignant tumors. Additional findings may include 
skin thickening, lymphadenopathy, structural deformation, or invasion of the chest wall or skin [4].

Chest CT scans present an opportunity for breast cancer detection, particularly as screening mammography 
rates decline [5] while chest CT usage increases [6,7]. For example, the availability of low-dose chest CT for 
lung cancer screening has risen. Consequently, some women may undergo chest CT scans without receiving 
mammograms or other breast screening tests. In such cases, chest CT may be the sole imaging modality that 
includes the breast, offering radiologists a crucial chance to identify cancers incidentally detected through 
“screening.” This trend is particularly relevant given recent guidelines from the American Cancer Society 
(ACS) [8] and the United States Preventive Services Task Force (USPSTF) [5,9]. The ACS recommends annual 
mammograms for women aged 45 to 54 and biennial mammograms for women aged 55 and older. Similarly, the 
USPSTF guidelines suggest initiating mammograms at age 50, followed by biennial screening for women aged 
50 to 74. These recommendations diverge from the American College of Radiology guidelines, which advocate 
annual mammograms starting at age 40. Consequently, women in their 40s or older women in years without 
mammograms may rely on chest CT scans for incidental breast cancer detection.

Chest CT scans offer promising potential for evaluating breast parenchyma without additional radiation 
exposure, patient time, or direct costs. Certain breast regions, such as the distal medial side, which may be 
challenging to assess through mammography, can often be better visualized on CT.

Several studies have reported incidental breast cancer findings on chest CT scans. Swensen et al. identified 
three cases of breast cancer (1.4%) among 210 patients screened for lung cancer [10]. Monzawa et al. reported 10 
breast cancers (0.34%) among 2,945 women [11], while Poyraz et al. identified 12 cases (0.64%) among 1,872 
women [12]. Lin found 36 cases (0.26%) among 13,651 patients after excluding individuals with a history of breast 
cancer [13]. Parvaiz and Isgar analyzed a population of 21,127 patients undergoing chest CT and identified 40 
cases (0.19%) with sporadic breast lesions, of which 20 were confirmed as cancer. Of these, only four cases were 
operable [14]. These findings underscore the potential of chest CT to detect unsuspected breast cancer.

Chest radiologists can evaluate and report CT BI-RADS density [15] while interpreting chest CT images, 
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including assessing breast parenchyma. Studies have demonstrated that the BARCS assessment, similar to the BI-
RADS assessment, identifies 82% of invasive breast cancers visible on mammograms. Although mammography 
remains the gold standard for early breast cancer detection and is proven to reduce mortality [16,17], declining 
utilization and increasing reliance on chest CT highlight the responsibility of chest radiologists to evaluate breast 
parenchyma when recent mammograms are unavailable.

Agliata et al. analyzed 42,864 chest CT scans performed between January 1, 2016, and April 30, 2022, on 
patients with unrelated diagnoses [18]. Among these, 68 patients (3 men and 65 women) underwent CT detection 
of breast nodules followed by mammography, breast ultrasonography, and biopsy. Histopathological confirmation 
of malignancy was obtained in 35 cases. Pearson’s chi-squared test revealed that CT features significantly 
associated with BI-RADS 5 after mammography included post-contrast enhancement (P = 0.001), irregular 
margins (P = 0.0001), nipple retraction (P = 0.001), skin thickening (P = 0.024), and structurally atypical lymph 
nodes suggestive of metastatic involvement (P = 0.0001). Predictors of positive biopsy results included post-
contrast enhancement (P = 0.0001), irregular margins (P = 0.0001), and suspicious lymph nodes (P = 0.011). The 
incidence of incidental breast nodule detection on chest CT was 0.21%. Accurate descriptions of CT features, such 
as post-contrast enhancement, irregular margins, nipple retraction, skin thickening, and atypical lymph nodes, can 
significantly aid in establishing radiological suspicion of malignancy.

3. Radiomics
3.1. Overview of radiomics
The concept of radiomics was first proposed by Dutch scholar Lambin in 2012. It refers to the high-throughput 
extraction of numerous quantitative image features from medical images, such as X-rays, CT scans, and MRI, 
and the application of data mining methods for the diagnosis and prediction of tumor diseases [19]. Radiomics 
technology evolved from computer-aided detection/diagnosis (CAD) technology, mining vast quantities of 
quantitative imaging features to characterize tumor heterogeneity and support clinical decision-making [20]. In the 
analysis of breast tumor images, radiomics methods have been widely utilized. Generally, the radiomics workflow 
includes data screening, medical imaging, feature extraction, exploratory analysis, and model construction [21].

3.2. Research progress of radiomics in the diagnosis of breast cancer
Radiomics involves transforming medical images into high-dimensional, mineable data [22,23]. In oncology, tumors 
are segmented, and hundreds or thousands of quantitative imaging features are extracted, including tumor shape, 
texture, and dynamics. These features encode simple patterns visible in medical images and complex higher-order 
patterns that are imperceptible to the human eye. This collection of features is collectively referred to as “radiomics 
features.” Statistical or machine learning classifiers are then applied to these radiomics signals to categorize 
patients based on predictions, such as distinguishing benign from malignant breast nodules. In supervised machine 
learning, paired data of “radiomics features” and patient outcomes are used to train the model to identify patterns, 
enabling the prediction of outcomes for new inputs [23]. Machine learning methods used for this purpose include 
logistic regression, random forests/decision trees, and support vector machines (SVMs).

Several studies have evaluated the potential of machine learning in chest CT for breast cancer diagnosis. 
Feng et al. [24] retrospectively analyzed 300 randomly selected patients, comprising 100 patients with triple-
negative breast cancer (TNBC) and 200 patients without TNBC (NTNBC). The cohort included 180 patients in 
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the training group and 120 in the validation group. Molecular subtypes of breast cancer were determined using 
immunohistochemical methods. Radiomics features were extracted from 3D CT images, and the least absolute 
shrinkage and selection operator (LASSO) logistic regression method was used to select image features and 
calculate radiomics scores. Receiver operating characteristic (ROC) curve analysis was employed to assess the 
diagnostic value of the radiomics score for TNBC. Five image features were significantly associated with TNBC 
subtypes (P < 0.001). Radiomics features based on imaging demonstrated strong predictive value for TNBC, 
with the area under the ROC curve (AUC) of the discovery group and validation group being 0.881 (95% CI: 
0.781–0.921) and 0.851 (95% CI: 0.761–0.961), respectively. Sensitivity and specificity were 0.767 and 0.873 
for the discovery group and 0.785 and 0.915 for the validation group, respectively. These findings indicate that 
radiomics features derived from preoperative CT can differentiate TNBC from NTNBC, offering additional value 
to conventional chest contrast-enhanced CT and assisting in clinical treatment planning.

In another study, Liu et al. [25] retrospectively collected data from 112 patients with pathologically confirmed 
breast cancer. The patients were randomly divided into a training set (75 cases) and a test set (37 cases). Radiomics 
features were extracted from breast CT images using the LASSO algorithm. A multivariate logistic regression 
model was constructed by combining the selected radiomics features with relevant clinical risk factors, and the 
model was validated. A corresponding nomogram was developed, and a calibration curve was used to evaluate 
model performance. The model constructed with the training set achieved a C-index value of 0.727 (95% CI: 
0.719–0.736), while the test set yielded a C-index value of 0.711 (95% CI: 0.703–0.718). The mean square error 
of the prediction model, calculated from predicted and actual probabilities of axillary lymph node metastasis, was 
0.072. These results suggest that the prediction model based on radiomics features extracted from preoperative CT 
images effectively predicts the status of axillary lymph node metastasis in breast cancer patients.

4. Deep learning
4.1. Overview of deep learning
Unlike traditional radiomics methods, deep learning constructs end-to-end models using multi-layer neural 
networks to achieve the detection, diagnosis, and prediction of breast tumors [26]. Currently, convolutional neural 
networks (CNNs) are the most commonly employed deep learning models in breast cancer research. A CNN 
model typically consists of input layers, convolutional layers, activation functions, pooling layers, and fully 
connected layers. Classical models, such as AlexNet, VGG, and GoogleNet, have been applied to the detection and 
diagnosis of breast tumors [27].

In comparison to traditional radiomics models, deep learning models do not require predefined features. 
Instead, they can autonomously extract valuable deep image information from breast tumor images through 
iterative training, resulting in higher predictive performance. However, as data-driven algorithms, high-
performance deep learning models often require extensive datasets, typically comprising tens of thousands of 
samples. The limited availability of large, multi-center datasets hinders the clinical translation and application of 
these models in current studies. Additionally, the “black box” nature of deep learning models presents challenges 
in terms of interpretability. Exploring methods to enhance the interpretability of deep learning models for breast 
tumor images remains a critical area of research.
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4.2. Research progress of deep learning in the diagnosis of breast cancer
Advances in computer technology and the widespread application of big data have driven the rapid development 
of deep learning, particularly convolutional neural networks [28]. In recent years, deep learning technology has been 
widely implemented in medical imaging [29]. Its application has shown the potential to enhance the sensitivity of 
chest CT in diagnosing early breast cancer, as evidenced by several studies.

A retrospective study conducted by Koh et al. [3] collected 1,170 preoperative chest CT scans following 
breast cancer diagnoses for algorithm development (n = 1,070), internal testing (n = 100), and external testing (n 
= 100). A deep learning algorithm based on RetinaNet was developed and tested for breast cancer detection using 
chest CT. On an in-house test set, the algorithm detected 96.5% of breast cancers with 13.5 false positives (FPs) 
per case. On the external test set, it detected 96.1% of breast cancers with 15.6 FPs per case. When a candidate 
probability of 0.3 was used as the cut-off value, the sensitivity of the internal test set was 92.0% with 7.36 FPs per 
case, and the sensitivity of the external test set was 93.0% with 8.85 FPs per case. When the candidate probability 
was increased to 0.4, the sensitivity of the internal test set was 88.5% with 5.24 FPs per case, and the sensitivity of 
the external test set was 90.7% with 6.3 FPs per case. These findings indicate that the deep learning algorithm can 
effectively and sensitively detect breast cancer on chest CT in both internal and external test sets.

Another study by Yang et al. [30] retrospectively collected data from 348 breast cancer patients with 
pathologically confirmed sentinel lymph node (SLN) metastases. All patients underwent enhanced CT 
examinations before surgery, and the CT images were segmented and analyzed to extract deep features. After 
feature selection, key features were used to construct deep learning signatures. The discrimination, calibration, 
and clinical utility of these signatures were evaluated in a main cohort (184 patients from January 2016 to March 
2017) and validated in an independent cohort (164 patients from April 2017 to December 2018). Ten deep-learning 
features were selected from the main cohort to establish a deep-learning signature for SLN metastasis. The AUC 
was 0.801 (95% confidence interval: 0.736–0.867) for the main cohort and 0.817 (95% confidence interval: 
0.751–0.884) for the validation cohort.

To further distinguish the number of metastatic SLNs (1–2 or more than 2), an additional deep-learning 
signature was developed, demonstrating moderate performance (AUC = 0.770). These findings suggest that the 
developed deep-learning model can be used to predict SLN metastasis status and the number of metastatic SLNs 
preoperatively in breast cancer patients. Deep learning models offer a non-invasive approach to assist clinicians in 
predicting SLN metastasis in breast cancer patients.

5. Conclusion
Radiomics and deep learning are two of the most widely applied technologies in the medical imaging field. 
Existing research on artificial intelligence applications in chest CT examinations primarily focuses on enhanced 
CT and multi-function CT, with limited studies investigating the direct application of non-enhanced chest CT.

Based on chest CT examinations, radiomics and deep learning have achieved advancements in several areas, 
including breast cancer diagnosis, axillary lymph node metastasis prediction, molecular subtype classification, and 
the evaluation of treatment efficacy following neoadjuvant chemotherapy. Among these, research on predicting 
axillary lymph node metastasis and evaluating treatment efficacy after neoadjuvant chemotherapy has garnered 
significant attention due to its substantial clinical relevance.

In breast cancer diagnosis using chest CT, both radiomics and deep learning have shown promise. However, 
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research in radiomics is more extensive and mature compared to that in deep learning. Nonetheless, deep learning 
remains in a stage of significant potential within this field, offering vast opportunities for further exploration and 
development.
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