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Abstract: Objective: To establish a new genomic signature for the prognosis of survival in relation to the tumor 

microenvironment in esophageal adenocarcinoma. Methods: Data from The Cancer Genome Atlas (TCGA) were applied, and 

the stromal and immune scores of patients with esophageal adenocarcinoma (EAC) were generated through the ESTIMATE 

algorithm. Differentially expressed genes were obtained, and genes concerning immune prognosis were identified on the basis 

of these scores. Functional analysis showed that these genes were primarily involved in immunobiological processes. 

Additionally, CIBERSORT was used to analyze 22 subgroups of tumor-infiltrating immune cells in the tumor 

microenvironment. Results: The results of the genomic assessment shown on the Kaplan-Meier curve revealed that EAC 

patients with high-risk scores have the worst survival. The risk score is valid as an independent prognostic factor for the 

overall survival in EAC patients. The tumor microenvironment was systematically analyzed, and the immune-related 

prognostic biomarkers of EAC have been proposed. Conclusion: The expression of tumor-infiltrating immune cells and 

immune-related genes in EAC have been identified. Some previously overlooked genes may be used as additional biomarkers 

for EAC in the future.  
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1. Introduction 

Esophageal cancer is one of the most common malignancies worldwide, and it has become the seventh 

most common cancer and the sixth leading cause of death globally [1]. Esophageal squamous cell carcinoma 

(ESCC) and esophageal adenocarcinoma (EAC) are the two main subtypes of esophageal cancer. 

Esophageal adenocarcinoma, which is commonly seen in many developed countries, mainly occurs in 

Barrett’s esophagus. In terms of its histological progress, it usually develops from epithelial metaplasia to 

invasive carcinoma, usually located at the distal esophagus. It is closely related to gastro-esophageal reflux 

and obesity [2]. In spite of recent progress in its treatment and diagnosis, the 5-year survival rate for 

esophageal adenocarcinoma is still very poor [3]. Therefore, a further comprehending of cancer and 

exploring of treatment modes are essential to improve the prognosis of EAC patients. 
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In recent years, people have gradually realized the function of tumor microenvironment (TME) in 

tumor biology. Tumor microenvironment refers to the cellular environment in which tumors are generated. 

It includes immune cells, endothelial cells, mesenchymal cells, inflammation agents, and extracellular 

matrix (ECM) [4,5]. The cells and molecules in the tumor microenvironment are dynamically changing, 

indicating the nature of tumor growth and mutually promoting immune absconding, tumor breeding, and 

metastasis [6]. In the tumor microenvironment, immune cells and stromal cells are the two main non-

neoplastic components that are considered to be the focus of prognostic assessment and tumor diagnosis. 

Therefore, comprehending the molecular structure and usage of the tumor microenvironment is the key to 

control tumor evolution and immune response. The expression of unique molecular biomarkers in immune 

cells and stromal cells has been determined, and a tumor microenvironment prediction algorithm based on 

immune/stromal/ESTIMATE scores has been established [7]. On the basis of the ESTIMATE algorithm, 

researchers have evaluated the prognosis of many tumors and explored gene changes [8-10]. However, the 

value of immune/stromal scores for EAC has not been investigated in detail. 

In this study, based on the exploration of the tumor microenvironment, immune-related prognostic 

biomarkers were traced in EAC, using both EAC cohorts of The Cancer Genome Atlas (TCGA) database 

and ESTIMATE algorithm.  

 

2. Materials and methods 

2.1. Data acquisition 

The gene expression profiles of patients with EAC were downloaded along with clinical data on gender, 

age, tissue type, TNM staging, survival, and outcome from the TCGA website 

(https://portal.gdc.cancer.gov/). The selected standards were: (1) patients with EAC; (2) available overall 

survival (OS) data; (3) available raw count or normalized gene expression data. The downloaded data were 

used to calculate the stromal and immune scores via the ESTIMATE database 

(https://bioinformatics.mdanderson.org/estimate/).  

 

2.2. Identification of differentially expressed genes (DEGs) 

The TCGA cohort was stratified according to the intermediate values of the stromal/immune scores. The 

low- and high-risk groups of DEGs were obtained by applying the “limma” package [11]. The cut-off values 

for the screening of DEGs were fold change of > 2, P < 0.05, and false discovery rate (FDR) of < 0.05. 

 

2.3. Heatmaps and Venn diagrams 

The “Heatmap” R package was used to conduct heatmaps, and the “VennDiagram” package was used to 

generate Venn diagrams. 

 

2.4. Bioinformatics analysis 

The GO enrichment analysis of DEGs was generated by applying the “clusterProfiler” package. Meanwhile, 

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis was obtained by the 

package. The PPI network was carried out through the Metascape website (http://metascape.org) [12] with 

default parameters.  

 

2.5. Construction of the immune-related risk signatures 

The endpoint was considered as the overall survival. The model was used to perform an overall survival 

analysis for verification. First, a preliminary screening of genes was conducted through univariate Cox 

regression. Next, in order to select the prognostic genes, the least absolute shrinkage and selection operator 

(LASSO) Cox regression model was used [13]. The “survival” and “glmnet” R packages were used to 
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analyze and obtain the model. Based on the results from LASSO Cox regression, immune-related risk 

signatures were established for the TCGA cohort. The risk score of each patient was calculated by taking 

advantage of both the gene expression levels and LASSO-Cox regression coefficients. The patients were 

divided into low- and high-risk groups on the basis of the median risk score, and the survival rates between 

the two groups were estimated based on a combination of Kaplan-Meier curve and log-rank analysis. The 

“timeROC” package was used to perform the time-dependent receiver operating characteristic (ROC) curve 

of the risk scores to identify the prognostic precision of risk scores. Finally, the independent prognostic 

values of risk scores and other clinical features were explored using univariate and multivariable Cox 

analysis.  

 

2.6. Survival analysis 

Kaplan-Meier curves were applied to determine genes that could independently predict the OS of EAC 

patients. Kaplan-Meier curves were generated using the “survival” R package. 

 

2.7. Evaluation of immune cell infiltration 

CIBERSORT algorithm was used to calculate tumor-infiltrating immune cells [14]. CIBERSORT 

(https://cibersortx.stanford.edu/index.php) is a web tool, which has a gene expression signature matrix of 

547 marker genes, applied to characterize the abundance of 22 immune cell types. The 22 immune cell 

subtypes include memory B cells, naive B cells, seven types of T cells, resting NK cells, activated NK cells, 

plasma cells, monocytes, M0-M2 macrophages, eosinophils, neutrophils, resting dendritic cells, activated 

dendritic cells, resting mast cells, and activated mast cells. In this study, CIBERSORT was used with a 

signature matrix at 1000 permutations to reckon the numbers and ranges of immune cell types in the case 

of transcriptome data as well as the distinctions in immune cell type composition among various groups. 

The results of the estimation were visualized with “barplot” and “vioplot” R packages. 

 

3. Results 

3.1. Differentially expressed gene analysis based on stromal/immune scores via the ESTIMATE 

algorithm 

In order to explore the relationships between the gene expression profiles and the stromal/immune scores, 

the RNA-sequencing data of the 79 EAC cases were downloaded from the TCGA database for analysis. 

Among these patients, there were 11 (13.92%) female patients and 68 (86.08%) male patients. The clinical 

characteristics of the patients are shown in Table 1. Based on the ESTIMATE algorithm, these patients 

were divided into high-score and low-score groups according to the median values of the stromal and 

immune scores. The heatmaps in Figure 1A and 1B revealed significant transcriptome data of the samples 

between the high and low stromal/immune score groups.   

In addition, the Venn diagrams of differentially expressed genes (DEGs) were drawn (Figure 1C, 1D, 

and 1E). According to the aforementioned threshold (fold change > 2, P < 0.05, and false discovery rate < 

0.05), 1,516 DEGs were obtained between high and low stromal groups and 988 DEGs were obtained 

between high and low immune score groups. Additionally, 835 genes were upregulated, and 1 gene was 

downregulated simultaneously between the stromal and immune score groups. 
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Table1. Clinical characteristics of patients with EAC in the TCGA database 

Variables Cases, N (%) 

Age at diagnosis  

≤ 60 30 (37.97%) 

>60 49 (62.03%) 

Gender  

Female 11 (13.92%) 

Male 68 (86.08%) 

Pathological stage  

I 9 (11.39%) 

II 22 (27.85%) 

III 27 (34.18%) 

IV 5 (6.33%) 

NA 16 (20.25%) 

TNM-T  

T0 1 (1.27%) 

T1 19 (24.05%) 

T2 10 (12.66%) 

T3 36 (45.57%) 

T4 1 (1.27%) 

NA 12 (15.19%) 

TNM-N  

N0 20 (25.32%) 

N1 37 (46.84%) 

N2 4 (5.06%) 

N3 5 (6.33%) 

NX 1 (1.27%) 

NA 12 (15.19%) 

TNM-M  

M0 51 (64.56%) 

M1 5 (6.33%) 

MX 9 (11.39%) 

NA 14 (17.72%) 

Note: NA, non-applicable 
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Figure 1. Stromal and immune scores of gene expression profiles in EAC; (A)(B) Heatmaps displaying distinct expressed genes 

according to stromal and immune scores; red marker reflects higher expression genes and blue marker reflects lower expression 

genes; (C)(D)(E) Venn diagrams of simultaneously differentially expressed genes drawn according to stromal and immune 

scores 

 

3.2. GO and KEGG enrichment analyses for DEGs 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of co-DEGs using 

the “clusterProfiler” package were carried out to assess the differentially expressed genes on the tumor-

infiltrating immune cells. The heatmap in Figure 2A exhibited 30 enriched terms of GO among the DEGs 

on the basis of biological process (BP), cellular component (CC), and molecular function (MF) for EAC 

cohorts; the heatmap in Figure 2B exhibited 15 enriched pathways of KEGG among the DEGs. Majority 

of these terms or pathways are related to cell activation and cell adhesion molecules (CAMs). Consistent 

with the GO and KEGG analyses, protein-protein interaction (PPI) networks were colored through different 

cluster ID (Figure 2C) and P-value (Figure 2D), which were generated using Metascape. As most networks 

from the DEGs are associated with immune response, the results indicated that the differently expressed 

genes obtained according to stromal and immune scores were significative. 
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Figure 2. GO and KEGG enrichment analyses of DEGs; (A) GO analysis of DEGs, including biological process (BP), cellular 

component (CC), and molecular function (MF); (B) KEGG analysis of DEGs; (C) Protein-protein networks colored by different 

cluster ID; (D) Protein-protein networks colored by P-value 

 

3.3. Establishment of genomic signature for the prognostic survival of EAC patients 

According to the 836 DEGs in the stromal and immune score groups of the EAC patients, a preliminary 

screening was performed using Cox univariate regression to eliminate over confounding gene interference 

and obtain those genes that have the greatest effect on prognosis. In order to prevent the exclusion of 

significant genes, 29 genes with P < 0.1 were screened and switched to LASSO regression. The LASSO 

coefficient profiles of the 29 genes (Figure 3A) were presented, and the results from a 10-fold cross-

validation were provided to determine the best value of the penalty parameter λ (Figure 3B). 

The forest map revealed the relationship between each gene and overall survival (Figure 3C). 

Ultimately, a genomic signature with seven genes (RASGRP2, TNXB, ZBTB16, MASP1, TLR6, 

TNFRSF13C, and CXCL10) was selected to construct a prediction model for patients with EAC according 

to the gene expression levels and their regression coefficients: 

 

Risk score = (0.12264 × expression level of RASGRP2) + (-0.09632 ×expression level of TNXB) + (-0.0091 × expression 

level of ZBTB16) + (-0.12716 × expression level of MASP1) + (-0.1131 × expression level of TLR6) + (-0.18604 × expression 

level of TNFRSF13C) + (0.06844 × expression level of CXCL10) 
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Figure 3. Establishment of genomic signature for the prognostic survival of EAC patients; (A) LASSO coefficient profiles of 

29 genes with P < 0.1; (B) The optimal values of the penalty parameter λ determined by 10-fold cross-validation; (C) Association 

of genes with overall survival; (D) Kaplan-Meier curves in EAC patients; (E) ROC curves of 1-year, 2-year, and 3-year OS of 

EAC patients. 

 

The median risk score was set as the cut-off value to divide EAC patients into low-risk and high-risk 

groups. The Kaplan-Meier curve revealed that low-risk patients had better survival rates (P = 0.016) 

(Figure 3D). Meanwhile, multivariate analysis also showed that the genomic signature with seven genes 

could independently predict the survival of EAC patients (P = 0.005, Table 2). The AUCs of time-

dependent ROC for 1-year, 2-year, and 3-year OS of the EAC dataset were 0.701, 0.809, and 0.64, 

respectively (Figure 3E). Therefore, the ROC curve confirmed the favorable effect of risk score in exerting 

prognostic value for esophageal adenocarcinoma. 
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Table 2. Univariate and multivariate analyses of prognostic factors in EAC patients 

EAC cohort 

Variables 
Univariate analysis Multivariate analysis 

HR (95%CI) P HR (95%CI) P 

Age 0.98 (0.95-1) 0.075   

Gender 0.91 (0.32-2.6) 0.860   

Race 0.73 (0.54-0.98) 0.039 0.55 (0.31-0.97) 0.038 

Tumor stage 2.5 (1.4-4.3) < 0.001 3.16 (1.24-8.04) 0.016 

Grade 2 (0.95-4.3) 0.070   

Risk score 4.8 (2-12) < 0.001 16.83(2.35-120.36) 0.005 

 

3.4. Survival analysis of simultaneously differentially expressed genes 

In order to investigate the regulatory mechanism of EAC prognosis, Kaplan-Meier curves were generated 

using gene expression levels and overall survival. The study illustrated that MASP1, TNFRSF13C, and 

ZBTB16 were statistically significantly associated with the overall survival of EAC (Figure 4A, 4B, and 

4C). 

 

 
Figure 4. Correlations of immune-related DEGs with overall survival of EAC cohort; (A)(B)(C) Prognosis-related DEGs in 

EAC; the Kaplan-Meier survival curves were drawn based on immune-related DEGs selected from high (red line) and low (blue 

line) gene expression groups; log-rank test evaluated the differences with P < 0.05.  

 

3.5. Immune microenvironment in EAC 

In order to completely comprehend the immune and stromal signature, the proportions of immune cells in 

tumor tissues were determined in comparison with those in adjacent normal tissues (i.e., 79 tumor samples 

with EAC and 10 normal samples). As shown in Figure 5A, the results of CIBERSORT revealed that the 

infiltration levels of activated memory CD4
+ T cells (P = 0.046) and resting NK cells (P = 0.041) were 

significantly higher in tumor tissues compared with normal tissues in patients with EAC; however, CD8 T 

cells (P = 0.028), activated NK cells (P = 0.001), and eosinophils (P＜0.001) were higher in normal tissues. 

Moreover, the infiltration levels of naive B cells (P = 0.015) were relatively lower in the high-risk group 

compared with the low-risk group (Figure 5B) in EAC cohorts. 
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Figure 5. Infiltrated immune cells in EAC cohort using the CIBERSORT algorithm; (A) Differential abundance of immune 

infiltration between tumor tissues and normal tissues in EAC; (B) Differential abundance of immune infiltration between high-

risk groups and low-risk groups; P < 0.05 is considered statistically significant. 

 

4. Discussion 

In recent years, with the improvement of treatment methods, such as radiotherapy, chemotherapy, targeted 

therapy, and immunotherapy, the survival of patients with esophageal cancer has improved, but the 

prognosis is still poor. The lack of effective prognostic biomarkers to guide the treatment of cancer is the 
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essential reason for the poor prognosis. A number of research studies have indicated that tumor 

microenvironment is a potential target for tumor therapy. First of all, cells in the tumor microenvironment, 

which have fewer mutations, selective pressure, and lower opportunity of developing drug resistance, are 

genetically more stable than cancer cells. Furthermore, owing to the lack of ability to depend on genetic 

mutations to conduct movement, the tumorigenicity of cells in the tumor microenvironment mainly depends 

on the factors in their environment. Consequently, they can be affected by the interaction of destructive 

environmental and other factors to drive functional changes during tumorigenesis [15]. Therefore, TCGA 

was used for bioinformatics analysis to identify immune-related genes in the tumor microenvironment that 

could predict the prognosis of EAC patients. 

In order to distinguish immune-related genes and comprehend the tumor microenvironment of EAC, 

stromal and immune scores were obtained using the ESTIMATE algorithm. By comparing the 

transcriptional expression profiles of 79 EAC patients with high and low stromal/immune scores, 835 

upregulated DEGs and 1 downregulated DEG were obtained. It appeared that these common DEGs are 

involved in crucial immune response processes, including cell activation and cell adhesion molecules 

(CAMs), indicating that dynamic immune microenvironments and responses in EAC might explain 

tumorigenesis and advancement with meaningful potential influences on the prognosis of patients.  

A new method of stratifying patients according to the different immune microenvironment scores was 

used to identify the DEGs. The intersected genes concerning prognosis-related genes selected from the 

univariate Cox regression method were subjected to LASSO regression with a 10-fold cross-validation to 

screen out seven novel DEGs (RASGRP2, TNXB, ZBTB16, MASP1, TLR6, TNFRSF13C, and CXCL10) 

in EAC. In the EAC cohort, a prognostic predictive model was established based on seven genes. 

RASGRP2 and CXCL10 are risk immune-related genes, while TNXB, ZBTB16, MASP1, TLR6, and 

TNFRSF13C are protective genes. The predictive model separated the patients into high- and low-risk 

groups according to their median risk scores. Accordingly, the risk scores were independently associated 

with the prognosis of EAC patients, and the outcomes were better in the low-risk group rather than the 

high-risk group (P＜0.05).  

The Kaplan-Meier survival curves revealed that MASP1, TNFRSF13C, and ZBTB16 were 

independently associated with prognosis. 

Mannose-binding lectin (MBL) is a component in the serum that activates complement through a new 

way to participate in innate immunity [16]. Human MBL forms complexes with serine proteases termed 

MASP (MBL-associated serine protease). In the activation of the lectin channel, MBL-associated serine 

proteases (MASP-1, MASP-2, MASP-3, MAp-44, and MAp-19) are key elements. The serum grades of 

these factors have been related to low survival of several cancer types, including colorectal cancer, ovarian 

cancer, and cervical cancer [17-19]. 

BAFF receptor (BAFF-R/BR3/TNFRSF13C) is regarded as a presently discovered molecule that binds 

BLyS, a protein which is a part of the tumor necrosis factor (TNF) family, and has an impact on the survival 

and maturation of B cells [20]. A number of B-cell malignancies, for instance diffuse large B-cell lymphoma 

(DLBCL), express BAFF-R, and its activation promotes proliferation and survival of DLBCL cells [21-24]. 

ZBTB16 was first discovered in a patient with acute promyelocytic leukemia. It is an inhibitory zinc-finger 

transcription factor, which is a part of POZ (poxvirus and zinc finger) – Krüppel family [25,26]. ZBTB16 is 

involved in many different signal pathways of hematopoietic cells and solid tumors, such as cell cycle, 

differentiation, and programmed cell death [25,27]. 

In view of the activity of novel genes in the process of tumorigenesis and the marked association with 

the prognosis of EAC patients, they may possess the performance of new tumor biomarkers if their specific 

roles in EAC are known in detailed through extensive investigations. 
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Tumor-infiltrating immune cells have a great impact on the tumor microenvironment. When using 

immune checkpoint inhibitors, tumor infiltrating immune cells should be considered, because the 

effectiveness of immune checkpoint blockade requires immune cell infiltration [28,29]. The abundance of 22 

immune cell subsets was calculated using the CIBERSORT algorithm, and the effect of tumor-infiltrating 

immune cells in esophageal carcinoma was illustrated. In this present study, the immune cell subsets in 

tumor tissues of EAC were significantly different from those in normal tissues; in EAC patients, the 

activated memory CD4
+ T cells, CD8 T cells, resting NK cells, activated NK cells, and eosinophils were 

significantly different in tumor tissues compared with those in normal tissues; in addition, the infiltration 

levels of naive B cells were significantly higher in the low-risk group. The results revealed that these 

immune cells may play an important role in the tumor microenvironment of EAC. A meta-analysis 

concluded that extensive tumor-infiltrating lymphocytes (TILs) are excellent prognostic indicators for the 

overall survival in patients with esophageal carcinoma (ESCA) [30]. It was found that activated memory 

CD4
+ T cells in tumor-infiltrating lymphocytes (TILs) widely infiltrated tumor tissues; however, CD8 T 

cells were universally discovered in normal tissues of EAC patients. The degree of tumor-infiltrating 

lymphocytes, especially activated CD8
+ T cells in melanoma, was found to be positively correlated with a 

better prognosis [31]. However, in another study involving 130 patients with esophageal adenocarcinoma, 

CD8
+ lymphocyte was found to have no associated with survival [32]. These results may suggest that immune 

cells have dual effects (host protection and tumor promotion) in different types of tumors [33,34]. Notably, it 

has been suggested that CD4
+ T cells are correlated with good prognosis in patients with esophageal 

carcinoma [35]; however, it was found that CD4
+ TILs are not associated with the survival of ESCA patients 

[30]. In the findings of this study, activated memory CD4
+ T cells were found to be higher in tumor tissues 

than in normal tissues of the EAC cohort. These controversial results may be due to tissue 

microenvironmental factors, which may change the phenotype and function of T cells early during 

esophageal disease progression and may function as targets for immune intervention [36]. Further research 

associated with the impact of immune-infiltrating cell balance on clinical outcomes is necessary. 

In recent years, it has been recognized that B cells play a very complex role in the tumor 

microenvironment, as some subsets of B cells may have immunomodulatory functions [37]. In this research, 

naive B cells were found to be associated with a low-risk score for esophageal adenocarcinoma, and it was 

hypothesized that they may be associated with good prognosis in patients with esophageal adenocarcinoma. 

However, the relationship between the subsets of B cells and the prognosis of patients with esophageal 

adenocarcinoma has not been defined.  

Currently, the number of studies on the prognostic value of infiltrated NK cells in esophageal 

adenocarcinoma are very limited. In the future, more relevant studies are needed to further clarify the 

relationship between immune cells, such as NK, and the prognosis of esophageal adenocarcinoma.  

There are several limitations in this study. First, this study was a retrospective study, in which the data 

of gene expression as well as clinical information were downloaded from the TCGA database; hence, 

selection and recall biases are inevitable. Second, the values of prognosis in EAC patients could not be fully 

elucidated due to the lack of comprehensive chemoradiotherapy in this study. Moreover, the present study 

did not rely on other available databases for external validation; thus, further investigations are required to 

study the mechanisms by which the immune-related prognostic genes regulate the initiation and progression 

of EAC.  

In conclusion, the expression of tumor-infiltrating immune cells and immune-related genes in EAC 

have been identified. Some previously overlooked genes may be used as additional biomarkers for EAC. 

Further in vivo and in vitro studies are required to explore the mechanisms through which the immune cells 

and genes are involved in EAC progression to promote advancement in EAC treatment.  
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