Objective In order to improve the accuracy in distinguishing subtypes of bladder cancer and to explore its potential therapeutic targets, we identify differences between two kinds of bladder cancer subtypes (basal-like and luminal) in molecular mechanism and molecular characteristics based on the bioinformatics analysis. Methods In this study, the RMA (robust multichip averaging) was applied to normalize the mRNA profile which included 22 samples from basal-like subtype and 132 from luminal subtype, and the differential expression analysis of genes with top 1000 highest standard deviation was performed. Then, the Gene Ontology and KEGG pathway enrichment analysis of differentially expressed genes was performed. In addition, the protein-protein interactions networks analysis for the top 100 most significant differentially expressed genes was performed. Results A total of 742 differentially expressed genes distinguishing basal-like and luminal subtypes were found, of which 405 were up-regulated and 337 genes were down-regulated in basal-like subtype. GO enrichment analysis showed that differentially expressed genes were significantly enriched in the extracellular matrix, chemotaxis and inflammatory response. KEGG pathway enrichment analysis showed that the differentially expressed genes were significantly enriched in the pathway of extracellular matrix receptor interaction. The hub proteins we founded in protein-protein interaction networks were LNX1, MSN and PPARG. Conclusion In this study, the mainly difference of molecular mechanism between basal-like and luminal subtypes are alteration in extracellular matrix region, cell chemotaxis and inflammatory response. Genes such as LNX1, MSN and PPARG were forecast to play important roles in the classification of bladder carcinoma subtypes.