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Abstract: Renal cell carcinoma (RCC), which accounts for about 90 percent of kidney cancers, has a distinct metabolic 
reprogramming profile characterized by increased aerobic glycolysis (Warburg effect), abnormal accumulation of lipids, 
and impaired mitochondrial function. Recent advances in high-throughput proteomic and metabolomic technologies have 
revolutionized our understanding of the pathophysiology of RCC, allowing for the systematic identification of disease-
specific molecular signatures, elucidation of drug resistance mechanisms, and possible targets for intervention. The review 
focuses on the use of proteomic and metabolomic technologies in renal cell carcinoma and the research progress on related 
biomarkers, and is expected to provide useful information for the early detection and treatment of RCC. 
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1. Introduction
Kidney cancer is one of the most common and fatal urological diseases in the world, with 430,000 new cases 
diagnosed each year by 2020. Histologically, clear cell renal cell carcinoma (ccRCC) accounts for approximately 
75% of renal cell carcinoma (RCC), which is the overwhelming majority (90%) of kidney cancers [1]. More than 
30% of patients with ccRCC have metastasis at the time of initial diagnosis and 40% of patients undergoing 
surgical resection eventually relapse [2].

Extensive studies have shown that RCC is a cellular metabolic disease. Metabolic alterations include an 
increase in aerobic glycolysis, phosphorylation by the pentose phosphate pathway, synthesis of fatty acids, 
metabolism of glutamine and glutathione, and a decrease in the tricarboxylic acid (TCA) cycle, as well as the 
oxidative oxidation and phosphorylation of fatty acids (Oxphos) [3]. Cancer metabolites have a major influence on 
chromatin remodeling and epigenetic dysregulation, which may result in characteristic hypermethylation, EMT 
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phenotype switching, and pseudohypoxic features [4].
Currently, the main treatment for metastatic RCC is targeted therapy and immunotherapy, but these are 

effective only in some patients and are prone to drug resistance [5]. As the hypoxia-inducible factor (HIF) pathway 
is critical in the pathophysiology of the ccRCC, HIF and downstream targets such as VEGFA have always been 
highly anticipated as drug targets [6]. However, researchers have a great interest in seeking novel biomarkers or 
druggable targets. In recent years, high-throughput proteomics and metabolomics technologies have been used 
to screen for biomarkers of various tumors, including RCC. The discovery of specific markers could provide 
new strategies for clinical diagnosis, treatment, and prediction of disease. This review focuses on metabolic 
reprogramming and the use of proteomic and metabolomic approaches, as well as the research progress on related 
biomarkers in renal cell carcinoma, to provide new insights for translational research in renal cell carcinoma.

2. Metabolic signature of renal cell carcinoma
RCC is a known metabolic disease that involves a range of metabolic disorders. Among the many metabolic 
pathways, the Warburg effect, increased fat deposition, and mitochondrial dysfunction are typical of the abnormal 
metabolic pathways.

2.1. Warburg effect in RCC 
The Warburg effect is a major metabolic characteristic of tumor cells, meaning that even in the presence of 
abundant oxygen, the tumor cells still obtain their energy mainly by glycolysis. In RCC, the Warburg effect, i.e. 
the aerobic glycolysis rather than oxidative phosphorylation, is favored in cellular energy metabolism.

Inactivation of the VHL gene is the primary genetic cause of most RCCs and also contributes to the Warburg 
effect. Deficiency of VHL can stabilize HIF and thereby promote angiogenesis and tumor growth [7]. HIF can 
reduce the glucose and glutamine oxidation by altering the TCA cycle and may regulate metabolism by altering 
the transcription of key genes in the glycolysis pathway, such as FKBP10 and TET2 [8–11]. 

The opposite reaction to glycolysis is gluconeogenesis, which is the process by which organisms convert 
various non-sugar substances to glucose or glycogen. Fructose-1,6-bisphosphatase (FBP) is a rate-limiting enzyme 
in gluconeogenesis and is subdivided into two subtypes, FBP1 and FBP2. Li and colleagues have shown that 
FBP1 can interact directly with HIF, thereby inhibiting the transcriptional activity of both HIF1α and HIF2α and 
also inhibiting glycolysis [12]. Moreover, HIF1α is shown to be primarily involved in glycolysis, while HIF2α is 
mainly involved in the regulation of genes involved in lipoprotein metabolism, ribosome biogenesis [13].

PBRM1 is the second most frequently mutated gene in ccRCC with a mutation rate of 38.1% [14]. Recently, 
we have demonstrated that when PBRM1 is knocked down, the levels of some major metabolic enzymes involved 
in the glycolytic pathway are increased, including enolase 1 (ENO1, pyridostigmine), pyruvate kinase (PKI), and 
lactate dehydrogenase A (LDHA) in ccRCC cells [15].

In addition to the major metabolic enzymes involved in the glycolytic pathway, other proteins have been 
shown to play a role in the development of RCC by influencing the glycolytic pathway. These include PFKFB3, 
ATAD2, TRIM21, SIRT3, METTL14, among others [16–19]. 

The major mutated genes in RCC, such as VHL and PBRM1, as well as genes coding for key glycolytic 
enzymes, play a critical role in the Warburg effect and the development of RCC. Some may have potential 
predictive significance.
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2.2. Increased fat deposition in RCC
Lipid droplets are the main sites for intracellular lipid storage and are markers for lipid deposition. Alterations 
in lipid metabolism can lead to increased lipid synthesis, abnormal lipid accumulation, and dysregulated lipid 
signaling, thereby promoting cell proliferation, invasion, and migration in ccRCC and other tumors [20,21].

HIF2α is related to lipoprotein metabolism and can regulate the expression of important lipogenic enzymes 
and transporters [22]. Being targets of HIF2α, the mediator complex subunit 15 (MED15) and transcription factor 7 
analogue 2 (TCF7L2), both play a role in lipid accumulation and RCC progression or metastasis [23,24]. In addition, 
other enzymes such as glutathione peroxidase 8 (GPX8) can also contribute to the formation of lipids and thus 
to the development of tumors. GPX8 belongs to the glutathione peroxidase (GPX) family and can catalyze the 
conversion of reduced glutathione (GSH) to oxidized glutathione (GSSG), protecting the biological membranes 
from damage by reactive oxygen species (ROS). RCC, depletion of GPX8 resulted in a significant reduction in 
lipid levels, fatty acid synthesis, and triglyceride esterification. Mechanistically, GPX8 regulates nicotinamide 
N-methyltransferase (NNMT) through IL6-STAT3 signaling and is independent of VHL [25].

Some others, such as CPT2, MLYCD, GPR1, CMKLR1, and ACAT1, among others, have the opposite
effect. There is evidence showing that CPT2 inhibits the proliferation, invasion, and migration of ccRCC cells 
mainly by inhibiting the ROS/PPARγ/NF-κB signaling pathway [26]. Malonyl-CoA decarboxylase (MLYCD) is an 
important regulator of fatty acid anabolism and is downregulated in ccRCC. When MLYCD-mediated fatty acid 
oxidation is inhibited, lipid droplet accumulation occurs, disrupting endoplasmic reticulum and mitochondrial 
homeostasis, increasing ROS levels, and inducing ferroptosis [27]. GPR1 and CMKLR1 are crucial for maintaining 
the balance of lipid metabolism. Adipose triglyceride lipase (ATGL), a key enzyme that initiates the hydrolysis of 
triglycerides to release fatty acids, can be inhibited by GPR1 and CMKLR1 to reduce lipogenic triglyceride lipase 
and increase lipid oxidation and ferroptosis. In addition, 2-(α-naphthol) trimethylammonium iodide (α-NETA) 
is a CMKLR1 antagonist that can effectively inhibit the growth of ccRCC cells by regulating lipid metabolism 
and activating SREBP1 signaling [28]. Acetyl-coenzyme A acetyltransferase 1 (ACAT1) is the only enzyme in 
the cell that catalyzes the formation of cholesterol esters from free cholesterol and long-chain fatty acids, and 
plays an important role in maintaining cellular cholesterol homeostasis. In ccRCC tissues, ACAT1 expression is 
downregulated. Overexpression of ACAT1 can inhibit the progression of ccRCC through affecting the PPAR/CPT1 
axis and AMPK signaling pathway [29].

2.3. Mitochondrial dysfunction in RCC
Mitochondria are double-membrane organelles that are ubiquitous in eukaryotic cells and provide cells with energy 
through oxidative phosphorylation. Mitochondrial dysfunction mainly refers to disorders of energy metabolism 
caused by damage to the mitochondrial membrane, inhibition of the respiratory chain, reduced activity of 
mitochondrial enzymes, and damage to mtDNA. When mitochondria are disrupted, they can release cytochrome c, 
produce mitochondrial reactive oxygen species and metabolites, thereby affecting the signaling cascade response 
of gene expression, cell proliferation, and differentiation [30].

While HIF1α promotes glycolysis, it can also weaken mitochondrial activity. HIF1α-dependent reduction 
in mitochondrial oxygen consumption increases the NADH/NAD+ ratio and thereby inhibits the activity of 
the NADH-sensitive glycolytic enzyme GAPDH [31]. Other proteins, such as NADH dehydrogenase 1 alpha 
subcomplex 4-like 2 (NDUFA4L2), mitochondrial fusion protein 2 (MFN2), among others, also play a critical role 
in the pathophysiology of the mitochondria and RCC [32,33]. 
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As a metabolic disease, ccRCC is characterized by the typical Warburg effect, increased fat deposition, and 
mitochondrial dysfunction. VHL inactivation or promoter hypermethylation occurs in ~90% of RCC. When VHL 
is inactivated, there may be upregulation of glycolysis, Wnt/β-catenin signaling, and mTORC1 signaling, as well 
as downregulation of fatty acid metabolism. Some dysregulated signaling pathways were also observed upon 
PBRM1 depletion [15]. 

3. Application of proteomics in renal cell carcinoma
Proteomics is the study of the complete set of proteins that are produced in a cell or an entire organism, including 
amino acid sequences of proteins, protein abundance, protein modification, and interaction between proteins. 
Conventional proteomic research techniques can be divided into three categories: Untargeted proteomics, targeted 
proteomics, and modified proteomics. Here, we mainly introduce the related applications of the above three 
categories of proteomics technologies in RCC studies.

Untargeted proteomics can be used to identify and/or quantify the relative amount of many proteins [34]. 
Untargeted proteomics makes use of stable isotopes or synthetic stable isotopes, and can accordingly be 
categorized into stable isotope labeling by amino acids in cell culture (SILAC, metabolically labeled), isobaric 
tag for relative or absolute quantitation, tandem mass tags (iTRAQ/TMT, chemical labeled), and data-dependent 
acquisition/data-independent acquisition (DDA/DIA, label-free). Using the iTRAQ/TMT labeling method, White 
et al. identified 55 differentially expressed proteins between ccRCC and normal adjacent tissue samples in a total 
of 199 patients [35]. Five of these, ENO1, HSPB1, LDHA, and AHNAK, which are increased in the ccRCC, were 
confirmed further by immuno-blot and tissue microarray. Atrih et al. used label-free quantitative proteomics (LFQ) 
technology to examine the different protein spectra between ccRCC tissues and normal adjacent tissues (NAT) [36]. 
They showed that nearly 600 proteins were differentially expressed, and two of these, CORO1A and ADFP, were 
further validated in ccRCC samples. Using label-free DIA technique, Lin et al. analyzed samples from 31 ccRCC 
patients and 31 healthy volunteers [37]. Significant differences in serum peptide composition were noted between 
the two groups. This difference in the spectrum of serum peptidomes helps to distinguish ccRCC patients from 
healthy volunteers and demonstrates the great potential of serum peptidomes for the diagnosis of cancer.

Targeted proteomics refers primarily to parallel reaction monitoring (PRM) targeted quantitative proteomics, 
and thus is suitable for validation of biomarker candidates [34,38]. Di et al. used LFQ and PRM to analyze the role of 
urinary peptides in distinguishing early ccRCC from healthy controls and renal cell carcinoma. Nine peptides were 
identified with significantly increased expression levels in small renal masses compared to controls. Some other 
markers associated with ccRCC progression or shorter overall survival have also been identified [39]. This suggests 
the clinical significance of proteomic analysis of urinary peptides.

4. Application of metabolomics in renal cell carcinoma
Metabolomics is an emerging omics technology developed after genomics, transcriptomics, and proteomics, 
which mainly studies the comprehensive and dynamic metabolites and their changes produced by endogenous or 
exogenous stimuli of biological systems (including cells, tissues, blood, urine, saliva, feces, etc.) at a specific time 
and in a specific environment [40]. 

Untargeted metabolomics refers to the systematic and comprehensive analysis of the entire metabolome of a 
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sample or the comparison of the dynamic changes of all small-molecule metabolites before and after stimulation 
of an organism. Complement component 1q subcomponent binding protein (C1QBP) is a highly conserved 
multifunctional protein that plays a vital role in inflammation, infection, and cancer. C1QBP can inhibit the 
adhesion and metastasis of ccRCC cells, and the expression level is decreased in ccRCC [41]. Using untargeted 
metabolomics technology Wang et al. analyzed the differential metabolites of 200 major metabolites in C1QBP-
overexpressing RCC cells [42]. Among 109 metabolites detected, 17 metabolites were changed significantly, 
including hypoxanthine. The data showed that C1QBP mainly promoted the catabolism of hypoxanthine by 
regulating the ROS generation mediated by xanthine dehydrogenase (XDH). Similarly, Feng et al. showed that 
knockdown of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) induced a significant reduction in 
multiple metabolites, among which the pentose phosphate pathway (PPP) was significantly enriched [43]. 

Targeted metabolomics refers essentially to the analysis of a specific substance or specific metabolite, such 
as a specific amino acid, short-chain fatty acid, or free fatty acid, and the quantification of the target metabolite 
concentration in the sample using a standard reference. SETD2 is a histone H3 lysine trimethyl transferase, and 
its inactivation is associated with the recurrence of ccRCC. Liu et al. used GC-MS-based targeted metabolomics 
to find that the loss of SETD2 increases the production of TCA cycle metabolites such as aspartate, malate, 
succinate, fumarate, and α-ketoglutarate in ccRCC cells, laying the foundation for further exploration of molecular 
mechanisms [44]. Amaro et al. used a GC-MS-based metabolic approach and analyzed a matched set of tissue and 
urine samples from a cohort of 18 patients with ccRCC. Data showed that the metabolic signature of the ccRCC 
tumors is reprogramming of amino acid, energy, sugar, and inositol phosphate metabolism, as well as a significant 
reduction in asparagine, proline, gluconate, 3-amino-butanate, 4-aminobutanoate, and urea [45]. 

5. Joint analysis of proteomics and metabolomics in renal cell carcinoma
Compared to single-omics analysis methods, joint analysis of proteomics and metabolomics of biological samples 
can explore the biological molecular functions and regulatory mechanisms related to diseases more systematically 
and comprehensively. Wettersten et al. conducted a joint proteomics and untargeted metabolomics analysis of 
RCC tissues of different grades based on the Fuhrman grading standard [46]. The study found that the TCA cycle 
was significantly downregulated in RCC tissues, glycolysis and tryptophan metabolic pathways were significantly 
upregulated in high-grade RCC tissues, fatty acid β-oxidation was significantly downregulated in high-grade RCC 
tissues, and the glutamine pathway was reprogrammed into the GSH/GSSG antioxidant system in high-grade 
RCC. This study revealed the grade-dependent metabolic reprogramming regulated by RCC-related metabolic 
pathways, which will help clinical personalized treatment of RCC patients of different grades and provide potential 
targets for new drug development. 

With joint analysis of proteomics and metabolomics, Yuan et al. found that the anti-tumor effect of SLC39A1 
may be related to changes in purine and pyrimidine metabolism, glutathione metabolism, and iron poisoning, 
ROS generation, PI3K-AKT, cAMP-Epac, and PPAR signaling pathways [47]. Solute carrier family 39 member 1 
(SLC39A1), also known as ZIP1, is responsible for transferring zinc ions into cells. 

The results of multi-omics analysis showed a more comprehensive picture of SLC39A1 molecular 
perturbations, providing new insights into the occurrence and development of RCC. Moreover, Li et al. used multi-
omics (histopathology, proteomics, single-cell sequencing, phosphorylation proteomics, tumor metabolomics, and 
tumor-specific glycoproteomics) technology to integrate histopathology, proteomics, and metabolomics data from 
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305 tumors to comprehensively characterize the complexity and heterogeneity of ccRCC [48].

6. Renal cell carcinoma-related biomarkers
Tumor biomarkers are molecules synthesized by tumor cells and related cells, and have important biological 
significance in tumor occurrence, development, and treatment. Detecting tumor marker levels can help with early 
diagnosis, precise diagnosis, treatment, and prognosis of tumors.

As highly sensitive, highly accurate, and high-throughput systematic research methods, proteomics and 
metabolomic approaches have been used to discover complex protein biomarkers in various tumors, such as lung 
cancer, cervical cancer, colorectal cancer, thyroid cancer, ovarian cancer, and renal cell carcinoma [49–54].

6.1. Urinary biomarkers
Urine collection is simple, non-invasive, and the amount is relatively abundant compared to other biological 
fluids [55]. Monteiro et al. analyzed volatile organic compounds in the urine and found that the combination 
of 21 metabolites can effectively distinguish RCC patients from non-RCC volunteers. 2-oxopropanal and 
2,5,8-trimethyl-1,2,3,4-tetrahydronaphthalene-1-ol are expected to be potential biomarkers for the diagnosis of 
RCC [56]. 

Liu et al. analyzed urine samples from 100 RCC patients and some controls and found that PKHD1L1, 
UGTL6, FAP4, and C3 can assist in the diagnosis of ccRCC [57]. In addition, they suggested that N-formyl 
kynurenine can be used as a potential diagnostic biomarker. Morozumi et al. showed that the combination of 
lactate, glycine, 2-hydroxyglutaric acid, succinic acid, and pyrimidine acid is a potential predictive model [58]. Oto 
et al. demonstrated that the p-cresol glucuronide can be used as a diagnostic marker, while isobutyl-L-carnitine 
and L-proline betaine can be used as potential prognostic markers for RCC [59]. Moreover, Yang et al. identified 
133 proteins that were differentially expressed in the urine of patients with ccRCC, including 85 upregulated and 
48 downregulated proteins [60]. They further showed that VSIG4, HLA-DRA, SERPINF1, and IGLV2-23 were 
statistically significant, and this prognostic model applies to patients with ccRCC, but further clinical studies are 
needed to confirm its effectiveness.  

6.2. Blood-based biomarkers
Serum tumor markers are important methods for early detection of tumors, monitoring tumor progression, and 
evaluating treatment efficacy. 

Liu et al. used early ccRCC as a model to explore the proteomic relationship between tissue, plasma, and 
urine. They demonstrated that three plasma proteins (FGFR1, GOT1, FGFBP2) and three urinary proteins 
(CETP, SEZ6L2, COX5B) have good performance for ccRCC prediction [61]. Zheng et al. proposed that two 
tumor metabolic derivatives, succinylated adenosine and succinate cysteine, could be excellent early-detection 
biomarkers in RCC cells lacking fumarate hydratase (FH) [62]. It is well-known that FH deficiency leads to 
abnormal metabolic re-programming that may lead to malignant transformation of the RCC. Furthermore, Wang 
et al. showed that 3-β-D-galactosyl-sn-glycerol, 7,8-dihydroneopterin, lysophosphatidylcholine (LPC), and 
γ-aminobutyryllysine can be used as biomarkers to distinguish patients with RCC from healthy controls or with 
benign renal tumors [63]. 

Wolrab et al. showed that seven lipids, including cholesterol ester (CE) 16:0, ceramide (Cer) 42:1, 
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lysophosphatidylcholine (LPC) 18:2, phosphatidylcholine (PC) 36:2, PC36:3, sphingomyelin (SM) 32:1 and 
SM41:1, were potential biomarkers for RCC, as well as for breast cancer and prostate cancer [64]. However, they 
can only be used for cancer screening and need to be further verified in prospective studies. 

Furthermore, Zheng et al. found that alanine, creatine, choline, isoleucine, lactate, leucine, and valine in 
serum can be used as prognostic markers of metabolic recovery in RCC patients after nephrectomy [65]. 

6.3. Other biomarkers 
Tumor interstitial fluid (TIF) is not only a transport medium for secreted proteins, nutrients, and waste between 
cells and capillaries, but also a rich source of candidate markers due to its proximity to tumors [66]. 

Teng et al. analyzed TIF from 10 patients with ccRCC and matched NATs and found that the TIF proteome 
was primarily composed of shed or secreted proteins that were eventually found in the circulation. The serum 
levels of eight proteins (NNMT, ENO2, TSP1, CD14, LGALB1, TBG [SERPINA7], ANXA4, and FT H1) were 
elevated in patients [67]. 

Compared with body fluid samples such as urine and blood, tissue samples contain richer protein metabolism 
information. Sato et al. used liquid chromatography-mass spectrometry to analyze cancer tissues and normal renal 
tissues of 20 ccRCC patients and found that a total of 58 metabolites were significantly elevated in tumor tissues, 
of which 34 showed potential for early diagnosis [68]. They also demonstrated some of the characteristic signaling 
pathways for malignant RCC, namely the TCA cycle, the TCA intermediates, the nucleotide sugar pathway, 
and the inositol pathway. Similarly, Niziol et al. found that the concentrations of acetyl carnitine in the lipid 
metabolism pathway and glutamine in the amino acid metabolism pathway were significantly increased in tumor 
tissues, which can be used as potential diagnostic biomarkers [69]. 

In addition to the aforementioned biomarkers based on proteomics and metabolomics methods, other 
molecules play an important role in the diagnosis, treatment, and prognosis of RCC. Miikkulainen et al. found that 
high expression of prolyl hydroxylase-3 (PHD3) in ccRCC can maintain high expression of HIF2α and its target 
genes, thereby enhancing the invasiveness of cancer cells [70]. In addition, two studies showed that serum PHD3 
is a new serological diagnostic biomarker for RCC [71,72]. Furthermore, kidney injury molecule-1 (KIM-1) can also 
be used as a potential diagnostic marker, as its expression level is significantly correlated with kidney injury status 
and increases with the stage of the disease [73,74].

In addition, Koh et al. showed that patients with reduced ctDNA mutation abundance had better progression-
free survival (PFS, P = 0.0441) than those with increased mutation abundance. Therefore, early ctDNA dynamics 
can be used as a predictive biomarker for ICI treatment response in patients with metastatic RCC [75]. Nuzzo et al. 
used a cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq) technology 
to screen markers for the whole genome methylation profile of ctDNA in plasma samples from 99 patients with 
stage I-IV RCC and 28 healthy cancer-free controls [76]. The top 300 differentially methylated regions (DMRs) are 
capable of discriminating between plasma RCC and other samples. Table 1 shows major omics-based biomarkers 
in renal cell carcinoma.
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7. Conclusion
RCC is one of the common cancers of the urinary system. Its main abnormal metabolic characteristics, such as the 
Warburg effect, increased fat deposition, and mitochondrial dysfunction, can cause various changes in proteins and 
metabolites. 

The abnormal metabolic characteristics of ccRCC determine the application of proteomics and metabolomics 
technologies in it. With the development of the omics-based technologies, a variety of potential biomarkers have 
been found that are expected to be used for early diagnosis, treatment, or prediction of prognosis. However, 
the accuracy of biomarkers identified by these technologies needs to be improved, and the specific molecular 
mechanisms of the identified biomarkers in tumors need to be further explored. 
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