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Abstract: Objective: To identify immune-related feature genes in ovarian cancer through bioinformatics analysis and 
perform immune-related investigations, which hold significant value for the early diagnosis and prevention of ovarian 
cancer. Methods: Bioinformatics analysis was utilized to identify immune-related feature genes in ovarian cancer. The 
GSE18520 and GSE40595 datasets were downloaded from the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/) based on the gene expression comprehensive database, and the corresponding platform’s chip probe 
information was retrieved. GSE18520 served as the training set, and GSE40595 served as the validation set. A total of 
2660 immune response genes (IRGs) were obtained from the ImmPort database (https://www.immport.org/home). Immune 
genes were screened and analyzed for feature genes using the “limma” package of R (4.2.1) software, and the results were 
visualized in a heat map. LASSO regression analysis and ssGSEA analysis were conducted to investigate the distribution 
of immune cell infiltration. Changes in regression coefficients of different genes in the model were also analyzed. Results: 
Five key genes—CLEC4M, DEFB1, LCN2, PTH2R, and LGALS2—were identified, and the correlation between these 
key genes and immune cells was analyzed. Conclusion: The findings indicate that CLEC4M, DEFB1, LCN2, PTH2R, and 
LGALS2 are significantly associated with various immune cell types, suggesting that these genes may regulate immune 
cell behavior and influence disease progression. This bioinformatics study provides a foundation for potential therapeutic 
targets in ovarian cancer; however, further clinical and experimental studies are required to validate the findings.
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1. Introduction
Ovarian cancer (OC) is one of the leading causes of death among gynecologic malignancies [1]. Due to the lack of 
distinct early symptoms, OC is often diagnosed at advanced stages. Reliable diagnostic markers and early detection 
methods remain insufficient, emphasizing the need to improve early recognition of OC among health professionals 
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and the general female population [2]. Therefore, identifying early warning indicators for OC prognosis and further 
exploring its molecular mechanisms can provide critical theoretical guidance for early intervention [3].

Over the past decade, progress in chemotherapy has been slow in improving the prognosis of OC, prompting 
increased research into molecular-targeted therapies. Similar to other cancer types, OC exhibits significant 
heterogeneity across different subtypes and individual tumors, posing major challenges to the effectiveness of 
targeted drug therapies [4]. This heterogeneity, a hallmark of many cancers including OC, has potential predictive 
value for survival outcomes following chemotherapy, particularly in high-grade serous ovarian cancer [5].

In China, the prevalence of OC has shown a significant upward trend over the past 30 years, with a notable 
acceleration in the last five years. The most affected population consists of women over 40 years of age, 
particularly postmenopausal and elderly women [6]. It is projected that the number of OC patients in China will 
continue to rise at a rate surpassing the global average over the next decade. Currently, surgical intervention 
remains the primary treatment for OC, serving to confirm tumor type and disease stage [7]. Postoperative 
chemotherapy with platinum and taxane drugs is then administered. In the past two decades, the rapid 
development of immunotherapy has introduced new possibilities for OC treatment, with the screening of potential 
immunotherapeutic drugs and the provision of adjuvant immunotherapy offering the potential to extend patient 
survival [8].

Bioinformatics, an interdisciplinary field combining biology, information science, and statistics, plays a 
critical role in cancer research [9]. It encompasses the processing and quality control of raw sequencing data, 
variant detection and annotation, integration of diverse molecular data types, visualization, and the generation 
of interpretable data reports. In recent years, bioinformatics has been widely applied in cancer diagnosis and 
treatment, driven by the need to convert biological data into actionable knowledge [10]. The integration and 
analysis of bioinformatics-generated big data are essential for personalized healthcare and genomics, establishing 
bioinformatics as a cornerstone of precision oncology [11].

Given the advancements in bioinformatics, future research on immune-related genes in OC is of great 
importance. In this study, the ovarian cancer dataset (accession number GSE18520) was retrieved from the 
Gene Expression Omnibus (GEO) database. Immune-related genes were screened, and characteristic genes were 
analyzed using R software packages such as “limma,” with the aim of elucidating the pathogenesis of OC and 
providing new references for early diagnosis and treatment strategies.

2. Materials and methods 
2.1. Data download and processing
Microarray or high-throughput data were downloaded from the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/) using “ovarian cancer” as the keyword, with the species set to “Homo sapiens.” The 
dataset was required to include both normal and disease samples. Datasets GSE18520 and GSE40595, along with 
their corresponding platform chip probe information, were retrieved and downloaded. GSE18520 was designated 
as the training group, while GSE40595 served as the validation group. During the conversion of probe IDs to gene 
symbols, if multiple probes corresponded to a single gene symbol, the average expression level was calculated to 
represent the gene expression level. This conversion was performed using Perl (version 5.10.1). Additionally, 2660 
immune response genes (IRGs) were obtained from the ImmPort database (https://www.immport.org/home).
2.2. Differential expression analysis
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Differential expression analysis was conducted using the “limma” package in R (version 4.2.1). Differentially 
expressed genes (DEGs) were identified based on an adjusted P-value < 0.05 and an absolute value of the log2 fold 
change ≥ 1 (|log2FC| ≥ 1). Heatmap visualization of DEGs was performed using the “pheatmap” package.

2.3. Screening of immune-related feature genes in ovarian cancer
Two machine learning algorithms, Support Vector Machine Recursive Feature Elimination (SVM-RFE) and Least 
Absolute Shrinkage and Selection Operator (LASSO), were employed to predict immune-related feature genes in 
OC. The Lasso regression algorithm was constructed using the “glmnet” package, with ten-fold cross-validation to 
determine the optimal λ value. L1 regularization was applied to enhance prediction accuracy and facilitate feature 
gene selection. SVM-RFE, a supervised learning algorithm commonly used for classification and regression 
analysis, was used to score genes and iteratively select those with strong classification performance. The “e1071” 
package was utilized to implement the SVM-RFE algorithm.

2.4. Validation of feature genes and evaluation of diagnostic accuracy
The expression levels of feature genes were validated using the GSE40595 dataset obtained from the GEO 
database. The “limma” package was used to extract the expression levels of feature genes, and differential analysis 
was performed with thresholds of |log2FC| ≥ 1 and adj. P-value < 0.05. Violin plots of differentially expressed 
genes were generated using the “ggunchained” package. The diagnostic performance of each feature gene was 
evaluated by plotting receiver operating characteristic (ROC) curves using the “pROC” package.

2.5. Immune cell infiltration analysis
Single-sample gene set enrichment analysis (ssGSEA) was employed to compare gene expression data from 
samples with immune cell gene sets, calculating the relative abundance of immune cells in each sample. The 
ssGSEA algorithm was used to estimate the infiltration abundance of immune cells in normal and ovarian cancer 
samples, and immune cell differences between the two groups were visualized. Correlation analysis among 
immune genes, immune cells, and feature genes was conducted using the “ggcorrplot” package. A correlated 
network heatmap was generated using the “linkET” package.

2.6. Construction of the ceRNA network for feature genes
miRNAs associated with feature genes were predicted using the miRDB (https://mirdb.org/), TargetScan (http://
www.targetscan.org/vert_72/), and miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/) databases. The intersection 
of prediction results from these three miRNA databases was identified as the target genes of feature gene-related 
miRNAs. Long non-coding RNAs (lncRNAs) targeting key miRNAs were predicted using the spongeScan 
(http://spongescan.rc.ufl.edu/) database. A ceRNA network of mRNA-miRNA-lncRNA for feature genes was 
subsequently constructed.

2.7. Statistical analysis
All bioinformatics analyses were performed using R software (version 4.1.2, 64-bit). Independent sample t-tests 
were conducted for comparisons between the two groups.
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3. Results
3.1. Differential expression analysis
A differential expression gene analysis was conducted to identify genes significantly differentially expressed 
between disease and normal groups. Using a P-value threshold of less than 0.05 and an absolute log fold change 
greater than 1 as screening criteria, 483 key genes were identified. These genes exhibited significant expression 
differences between the groups, indicating their potential roles in the disease’s onset and progression. To visualize 
the expression patterns of these key genes, a heatmap was generated, illustrating their expression differences 
across samples (see Figure 1). The heatmap revealed distinct expression patterns between the disease and normal 
groups, establishing a foundation for subsequent in-depth analyses.

Figure 1. Heatmap of key genes. This heatmap displays the expression profiles of the 483 key genes with significant 
differences between the disease and normal groups. Each row represents a gene, and each column represents a sample. Red 
indicates gene upregulation, while blue indicates downregulation. The distinct expression patterns highlight the potential 
involvement of these genes in disease progression.

3.2. Key gene selection
To identify core disease-related genes among the DEGs, an intersection analysis was performed between the 
DEGs and known immune-related feature genes. This analysis identified 51 genes implicated in immune-related 
pathways (Figure 2). Further screening using the LASSO regression model narrowed the selection to five key 
genes: CLEC4M, KCNH2, AKT3, TNFRSF8, and FCN1 (see Figures 3 and 4). These genes are hypothesized to 
play critical roles in immune regulation and disease progression, forming the focus of subsequent investigations.
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Figure 2.  Intersection genes.  The left  s ide shows 
differentially expressed genes, while the right side displays 
known immune-related characteristic genes. An intersection 
analysis identified 51 key genes linked to immune-related 
pathways.

Figure 3. LASSO regression model selection parameter 
curve. This figure illustrates the relationship between the 
penalty coefficient (λ) and model performance in the LASSO 
regression analysis. The x-axis represents logarithmic λ 
values, and the y-axis shows the binomial deviance. Red 
dots indicate model deviations at different λ values, while 
the vertical dashed line identifies the optimal λ for gene 
selection.

Figure 4. LASSO regression coefficient path diagram. 
This diagram depicts the changes in regression coefficients 
of genes as the penalty parameter (λ) varies. The x-axis 
represents the L1 norm (λ values), and the y-axis represents 
regression coefficients. Different colored lines correspond to 
different genes. The five identified key genes are those whose 
coefficients remain significant as λ increases.
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3.3. Immune correlation analysis
To evaluate the relationship between the selected key genes and immune cells, ssGSEA was applied to assess 
immune cell infiltration. The analysis revealed significant differences in the infiltration levels of multiple 
immune cell types between the normal and disease groups. For instance, activated CD4 T cells and mast cells 
showed notable variations in infiltration levels (see Figure 5), suggesting their involvement in disease onset and 
progression.

Figure 5. Immune cell infiltration distribution (ssGSEA analysis). This figure illustrates the infiltration levels of various 
immune cell types between the disease and normal groups. The x-axis represents immune cell types, and the y-axis denotes 
infiltration proportions. The P-values above each cell type indicate the significance of the differences.

Correlation analysis was also conducted to investigate the associations between the five key genes and 
various immune cell types (see Figure 6). The results highlighted a strong correlation between the KCNH2 gene 
and several immune cell types, particularly immature dendritic cells and natural killer cells. These findings suggest 
that the selected key genes may influence disease progression through the modulation of immune cell behavior. 
This analysis provides valuable insights into the immune mechanisms underlying the disease and highlights 
potential diagnostic and therapeutic targets.
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Figure 6. Correlation analysis between key genes and immune cell types. This figure shows the correlation between 
the five key genes and immune cell types. Line colors represent the correlation direction (orange for positive, green for 
negative), and line thickness indicates correlation strength. The KCNH2 gene exhibited significant correlations with 
multiple immune cell types, emphasizing its potential role in modulating immune cell behavior.

4. Discussion
Increasing evidence highlights the critical role of interactions between tumor cells and the tumor 
microenvironment, particularly the immune microenvironment, in tumor progression [12]. This study utilized 
bioinformatics to analyze 2,660 immune-related genes from the GSE18520 dataset. Several genes, including 
C-type lectin domain family 4, member M (CLEC4M), beta-defensin 1 (DEFB1), lipocalin 2 (LCN2), parathyroid 
hormone 2 receptor (PTH2R), and lectin, galactoside-binding, soluble, 2 (LGALS2), were identified as being 
associated with OC.

CLEC4M was found to potentially play a significant role in the activation and response of immune cells such 
as T cells, lymphocytes, myeloid leukocytes, and macrophages, reinforcing its involvement in immune activity 
and its influence on the tumor microenvironment. Studies have demonstrated a correlation between CLEC4M and 
tumor progression [13,14]. Analysis using the KMplot™ database has shown that CLEC4M overexpression is linked 
to recurrence-free, progression-free, and disease-specific survival in patients. CLEC4M overexpression inhibits the 
proliferation of Huh7 and PLC/PRF/5 cells while enhancing apoptosis by suppressing the Janus kinase 1/signal 
transducer and activator of the transcription 3 pathway, which is implicated in various tumor types [15].

The beta-defensin family is integral to host defense against viral infections, with DEFB1 recognized as a 
critical antimicrobial peptide in epithelial cells [16]. Although DEFB1 is known as a tumor suppressor gene, its 



58 Volume 2; Issue 4

role in OC has not been previously reported [17]. This study suggests that further investigation into DEFB1 could 
provide valuable insights and novel approaches for OC treatment.

LCN2, a member of the adipokine protein family, regulates processes associated with cancer cachexia 
in diseases such as lung, pancreatic, breast, and oral squamous cell carcinomas [18]. It has garnered attention 
as a therapeutic target for cancers, including OC, where its transcriptional activity may influence cancer cell 
invasiveness and angiogenic capacity [19,20]. Serum LCN2 levels have shown potential as biomarkers for epithelial 
ovarian cancer, warranting further research to determine its utility in early diagnosis and improved sensitivity and 
specificity for identifying subgroups of OC [21–23].

The parathyroid hormone 2 receptor (PTH2R), concentrated in the endocrine and limbic regions of the 
forebrain, is a B1 G protein-coupled receptor involved in calcium transport, nociception, and wound healing [24,25]. 
Analysis has linked PTH2R with the tumor suppressor gene MUM1L1, with higher expression levels observed 
in normal ovarian tissue compared to OC tissue [26]. Reducing PTH2R expression has been shown to inhibit OC 
growth, invasion, and metastasis [27]. Furthermore, PTH2R expression correlates with increased tumor mutational 
burden (TMB), suggesting its potential as a future biomarker for OC.

LGALS2, a member of the galactoside-binding galectin family, is associated with immune evasion and 
disease pathogenesis in conditions such as inflammatory bowel disease, coronary artery disease, and cancer [28]. 
LGALS2 increases tumor-associated macrophages, and its inhibition via antibodies has been shown to reverse 
immunosuppression and prevent tumor growth [29–31]. Elevated LGALS2 expression is linked to favorable prognoses 
in diseases like rheumatoid arthritis and thyroid and colorectal cancers [30,33]. However, its role in OC remains 
unclear and requires further investigation to elucidate its therapeutic potential.

5. Conclusion
In conclusion, this study identified immune-specific targets for OC through systematic and effective screening 
methods. The findings provide a theoretical framework for further understanding OC pathogenesis and propose 
new targets for clinical treatment. However, these results are derived from online databases, necessitating 
additional validation through animal and clinical studies. Such efforts could enhance the clinical diagnosis and 
treatment of OC and support the development of novel therapeutic agents.
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