

# Hyperthermia in Combination with Radiation versus Radiation Alone for Superficial Tumors: A Systematic Review and Meta-analysis

Sicong Wang<sup>1†</sup>, Yanglong Wu<sup>2†</sup>, Congcong Wu<sup>1\*</sup>

<sup>1</sup>The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China

<sup>2</sup>Wenzhou Medical University Renji College, Wenzhou 325000, Zhejiang, China

† These authors contributed equally to this work and share the first authorship.

\*Corresponding author: Congcong Wu, 690965785@qq.com

**Copyright:** © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

**Abstract:** *Objective:* Aim to evaluate the efficacy of hyperthermoradiotherapy (HTRT) VS radiation therapy (RT) alone in patients with superficial tumors, mainly including breast cancer, head and neck cancer, and melanoma. The study undertook a systematic review and meta-analysis, and a preset subgroup analysis. *Methods:* A systematic literature search was conducted of the PubMed database and the bibliographies of related studies. *Results:* A total of 15 articles ( $n = 1368$ ) met our eligibility criteria. The meta-analysis of all patients in 19 groups from 15 articles showed HTRT with significant improvement in complete response (CR) versus the RT group ( $OR = 2.393$ , 95% CI 1.749–3.274,  $p = 0.000$ ) with high heterogeneity ( $\chi^2 = 33.67$ ,  $p = 0.014$ ,  $I^2 = 46.5\%$ ). *Conclusion:* HTRT have significant improvement in CR versus RT alone in superficial tumors. A well-researched but maybe underutilized method, HT can have a major clinical impact by improving local tumor management.

**Keywords:** Hyperthermia; Radiotherapy; Superficial tumors; Complete response; Breast cancer; Local recurrence; Head and neck cancer

**Online publication:** December 31, 2025

## 1. Introduction

In the endeavor to augment tumoral temperature within the delineated interval of 40°C to 44°C, hyperthermia (HT) emerges as a potential efficacious therapeutic avenue. A high dosage of radiation therapy (RT), often requisite for maintaining local control, inherently carries an augmented likelihood of complications. HT enhanced the response to X-rays and photons in a murine tumor and normal skin with DNA damage and tumor hypoxia<sup>[1]</sup>. Tumors' alpha/beta ratios witness reduction attributable to thermoradiobiological interactions impacting reparative

processes post RT-induced genotoxic insults, established as pivotal predictors discriminating risk variances between hyperthermoradiotherapy (HTRT) versus standalone RT [2]. In low-pH, hypoxic or nutrient-deprived conditions where radiation resistance could be observed in common, HT can bring direct cytotoxicity to gross tumors. HT causes protein denaturation as the predominant target, which could induce damage to all intracellular signaling pathways, including DNA repair and cell cycle sensitivity [3,4]. Combined radio(chemo)therapy and HT stabilized or improved the assessment of quality of life scale items 3 and 12 months after treatment in patients who were treated with palliative intent and curative intent [5]. Multimodal treatment has been suggested to improve outcomes in retroperitoneal soft tissue sarcoma, and multimodal neoadjuvant therapies, including regional HT are not related to postoperative morbidity [6,7]. Superficial water-filtered infrared-A radiation HT has high efficacy in clinical oncology when exposed to composite tissues with highly variable water and fat contents [8]. Abundant clinical investigations have documented that HTRT amplifies clinical outcomes—manifested through bolstered response metrics, localized dominance, and enhanced survival indices among patients with breast, cervix, head and neck cancers, melanoma, bone metastases, portraying negligible increments in normal tissue morbid sequelae [9–13]. HT offers a cost-effective approach to cancer treatment, making it particularly suitable for resource-limited settings. Its relatively low equipment and operational costs, compared with advanced radiotherapy or surgical interventions, enable wider accessibility in underdeveloped regions. Considering the basic research evidence, good clinical performance, and low economic burden of HT, we have decided to further study HT.

It is discernible that properly achieving thermal elevation in relatively superficial lesions appears plausible, accompanied by adequate acquisition of temperature distribution measurements, even amidst constraints posed by extant HT apparatus; thereby, superficial cancer typologies are accordingly prioritized for investigational pursuits. Aiming to evaluate the efficacy of HTRT VS RT alone in patients with superficial tumors, mainly including breast cancer, head and neck cancer, and melanoma, the study instituted comprehensive systematic review methodologies supplemented by meta-analytical assessment, complemented by prespecified subgroup dissections.

## 2. Methods

### 2.1. Search strategy

Compliant with the PRISMA standards, a comprehensive examination of literature within the confines of the PubMed database from the database's inception up to May 1, 2024, assessing the effects manifested by HTRT VS RT alone for superficial tumors. The keywords used were: HT, radiation, breast cancer, superficial tumor. The bibliographies of selected articles were also manually searched for any additional related reports.

### 2.2. Selection criteria

Studies had to meet the inclusion criteria, which were formulated as a priority. Firstly, 2-arm studies (randomized and non-randomized) treated superficial tumors with local HT and external radiation in the HTRT group versus RT alone as control. However, those using surgery and/or interstitial brachytherapy were excluded. Secondly, the present meta-analysis focused on studies that assessed the complete response (CR) rate. Thus, articles that did not provide data about CR were excluded. For articles with overlapping data from the same trial, we only included the most complete and recent article after analyzing all the data. The publication language was restricted to English.

### 2.3. Data extraction

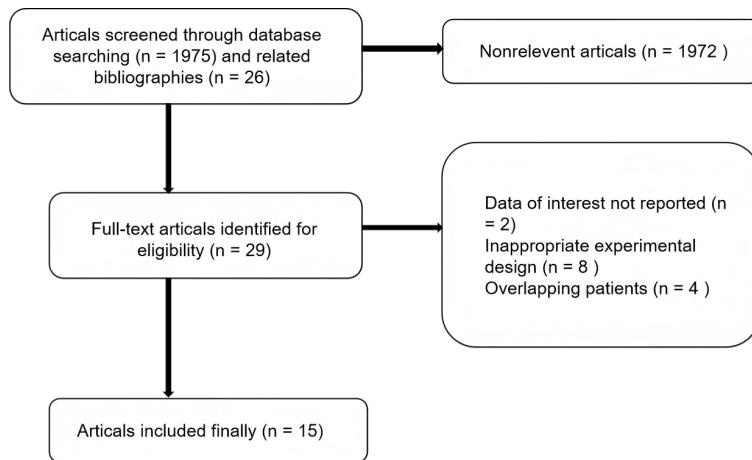
The priority endpoint of concern was CR at the end of treatment, and all studies that reported CR after HTRT

or RT alone were considered. CR was defined as all target lesions disappeared and no new lesions appearing, extracted from every eligible article as the primary outcome in our research. Other extracted data included the first author, publication year, country, study design, accrual period, number of patients, age, follow-up, primary/recurrent disease, previous RT, RT dose, type of HT, HT-RT sequence and adverse events (AEs). The articles were extracted independently by two authors in case of discrepancy, and a consensus was reached between the authors.

## 2.4. Statistical analysis

The examination of the impact wielded by HTRT in contrast with RT upon CR necessitated computing the aggregated odds ratio (OR), alongside its associated 95% confidence interval (CI). An evaluation was conducted concerning a state of heterogeneity, which stood appraised through the implementation of both the  $\chi^2$  test and  $I^2$  statistic. When heterogeneity was high ( $I^2 > 75\%$ ), performing a random effects model was preferred. Subsequently, sources contributing to said heterogeneity underwent exploratory scrutiny via meta-regression analyses, in which potentially relevant factors examined individually were year of publication, country, RCT or not, number of patients, primary disease, previous RT, type of HT, interval between RT and HT, HT sessions per week, HT duration. Analyzed further were preplanned subgroup analyses, which encompassed three distinct subgroups: breast cancer, recurrent breast cancer, head and neck cancer. We performed the meta-analysis in Stata 14.0 software with the commands metan, metareg, and metabias.

## 3. Results


### 3.1. Included studies

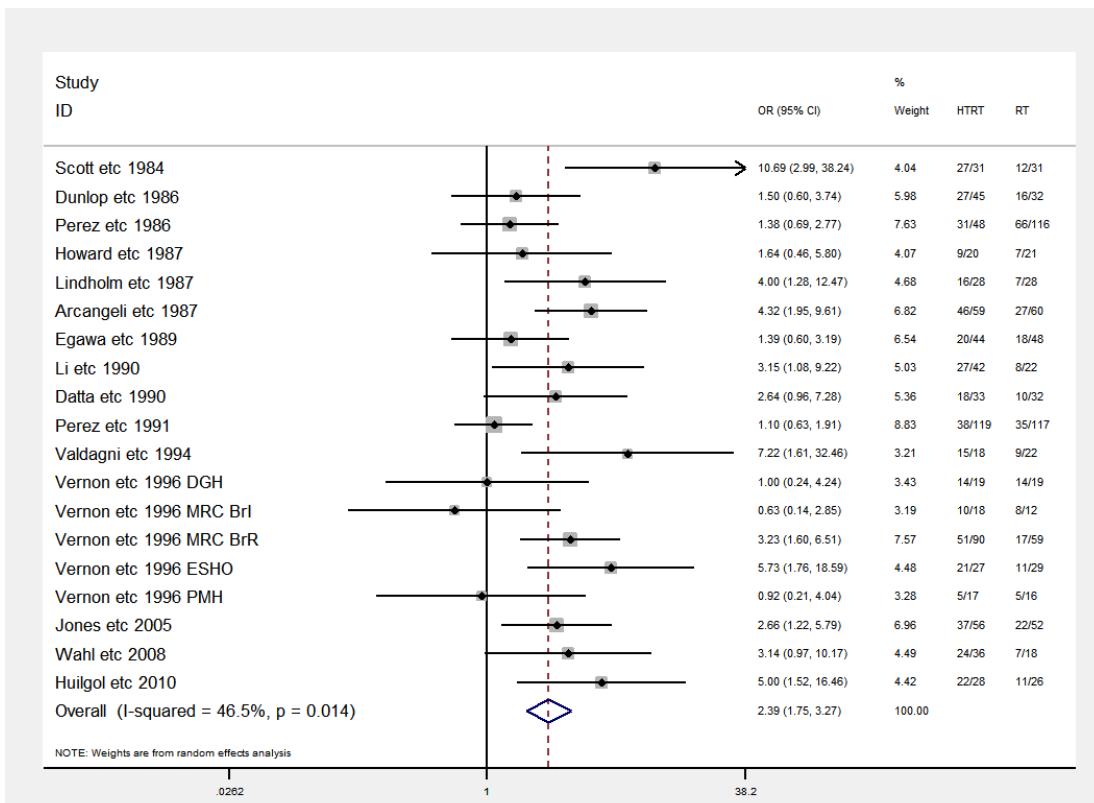
A comprehensive examination yielded 1975 articles alongside a review of 26 bibliographical references relevant to the subject matter. Following the exclusion of studies not meeting eligibility parameters, an initial selection brought forth 29 articles. Observations revealed that four qualifying articles presented data derived from identical patient cohorts, necessitating reliance solely on findings supported by the most recent and updated datasets. Of these, two documents failed to provide pertinent data, while eight exhibited inappropriate experimental design. It is discernible from this sequence that ultimately, 15 articles (sample size:  $n = 1368$ ), spanning publications from 1987 through to 2008, conformed to our stipulated criteria for inclusion in analysis. Details of the study screening are presented in **Figure 1**. Study characteristics extracted from each study are separately summarized in **Table 1**.

**Table 1.** Features of the 15 articles

| Author; year                          | Country           | RCT | Accrual period | Number of patients | Age (years)                      | Follow-up                                                | Primary/recurrent disease status                                                                                                               | Pathology                                                            | Previous RT                               | Previous RT dose                                         |
|---------------------------------------|-------------------|-----|----------------|--------------------|----------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|
| Scott et al. 1984 <sup>[14]</sup>     | USA               | No  | NA             | 59                 | Average 59.4                     | Minimum 6 months                                         | 18/59 patients with squamous cell carcinoma of head and neck; 39/59 patients with adenocarcinoma of breast cancer; 2/59 patients with melanoma | 0                                                                    | NA                                        | NA                                                       |
| Dunlop et al. 1986 <sup>[15]</sup>    | UK                | No  | NA             | 28                 | Female 33-82; male 29-70         | NA                                                       | 18/28 patients with adenocarcinoma of breast cancer                                                                                            | NA                                                                   | NA                                        | NA                                                       |
| Perez et al. 1986 <sup>[16]</sup>     | USA               | No  | 1964-1984      | 164                | NA                               | Minimum 6 months                                         | Recurrent breast cancer                                                                                                                        | NA                                                                   | 75% patients > 50 Gy                      | NA                                                       |
| Howard et al. 1987 <sup>[17]</sup>    | UK                | No  | NA             | 16                 | NA                               | 4-31 weeks, mean 13 weeks.                               | 6/16 patients with squamous cell carcinoma of the head and neck                                                                                | NA                                                                   | NA                                        | NA                                                       |
| Lindholm et al. 1987 <sup>[18]</sup>  | Sweden            | No  | 1980-1984      | 38                 | 22-94, median 68                 | 1-38 months                                              | 45/85 tumors; breast; 15/85 tumors; head and neck                                                                                              | 66/85 tumors: adenocarcinoma; 12/85 tumors: squamous cell carcinomas | 41/57 tumors (RT + HT); 16/28 tumors (RT) | 24-70 Gy, median 49 Gy (RT); 26-67 Gy, median 47 Gy (RT) |
| Arcangeli et al. 1987 <sup>[19]</sup> | Italy             | No  | 1977-1984      | 55                 | NA                               | NA                                                       | 81/119 tumours; squamous cell carcinoma of the head and neck; 39/119 tumours; melanoma                                                         | NA                                                                   | NA                                        | NA                                                       |
| Egawa et al. 1989 <sup>[20]</sup>     | Japan             | Yes | 1985-1987      | 92                 | 20-82                            | 1 month                                                  | 33/92 patients with head and neck; 19/92 patients with breast; 24/92 patients with others                                                      | NA                                                                   | 18/44 (RT + HT); 15/48 (RT)               | NA                                                       |
| Li et al. 1990 <sup>[21]</sup>        | China             | No  | 1980-1983      | 23                 | 34-78, median 56                 | 6-37 months                                              | 12 primary breast tumors and 52 NA recurrent tumors                                                                                            | NA                                                                   | 20/23 patients                            | 40-65 Gy                                                 |
| Datta et al. 1990 <sup>[22]</sup>     | India             | Yes | NA             | 65                 | NA                               | 18-28 months, median 21 months                           | Previously untreated squamous cell carcinoma of the head and neck                                                                              | NA                                                                   | No previous RT                            | NA                                                       |
| Perez et al. 1991 <sup>[23]</sup>     | USA               | Yes | 1981-1987      | 236                | 18-93                            | NA                                                       | 97/236 patients with head and neck; 68/238 patients with breast or chest wall                                                                  | 84/236 adenocarcinoma; 75/236 squamous cell carcinomas               | 38% (RT + HT); 46% (RT)                   | 50-60 Gy                                                 |
| Valdagni et al. 1994 <sup>[24]</sup>  | Italy             | Yes | 1985-1986      | 41                 | 37-84, median 61                 | 4-80 months, median: 12 months (RT), 18 months (RT + HT) | Metastatic squamous cell lymph nodes of the head and neck                                                                                      | NA                                                                   | No previous RT                            | NA                                                       |
| Vernon et al. 1996 <sup>[25]</sup>    | Europe and Canada | Yes | 1988-1993      | 306                | 61 ± 13                          | Minimum 5 months                                         | 30/306 patients with primary breast cancer and 27/6306 recurrent. MRC Br: 30/30 primary disease.                                               | NA                                                                   | 120/171 (RT + HT); 17/52 (RT)             | NA                                                       |
| Jones etc 2005 <sup>[13]</sup>        | USA               | Yes | 1994-2001      | 108                | Median 52.4 (RT + HT); 59.3 (RT) | NA                                                       | 37/56 patients with breast/breast wall (RT + HT); 33/52 patients with breast/breast wall (RT)                                                  | NA                                                                   | 22/56 (RT + HT); 17/52 (RT)               | NA                                                       |
| Wahl etc 2008 <sup>[26]</sup>         | USA               | No  | 1993-2005      | 81                 | 26-70, Median 48                 | 1-144 months, median 12 months                           | Locally recurrent breast cancer with previous RT                                                                                               | NA                                                                   | 100%                                      | 19.6-82G, median 60 Gy                                   |
| Huilgol etc 2010 <sup>[27]</sup>      | India             | Yes | 2005-2009      | 56                 | 31-78, median 58                 | 61.5% < 6 months (RT), 42.8% 6-12 months (RT + HT)       | Head and neck cancer                                                                                                                           | NA                                                                   | NA                                        | NA                                                       |

\* Interval since the last treatment (RT, surgery, chemotherapy, immunotherapy, HT)

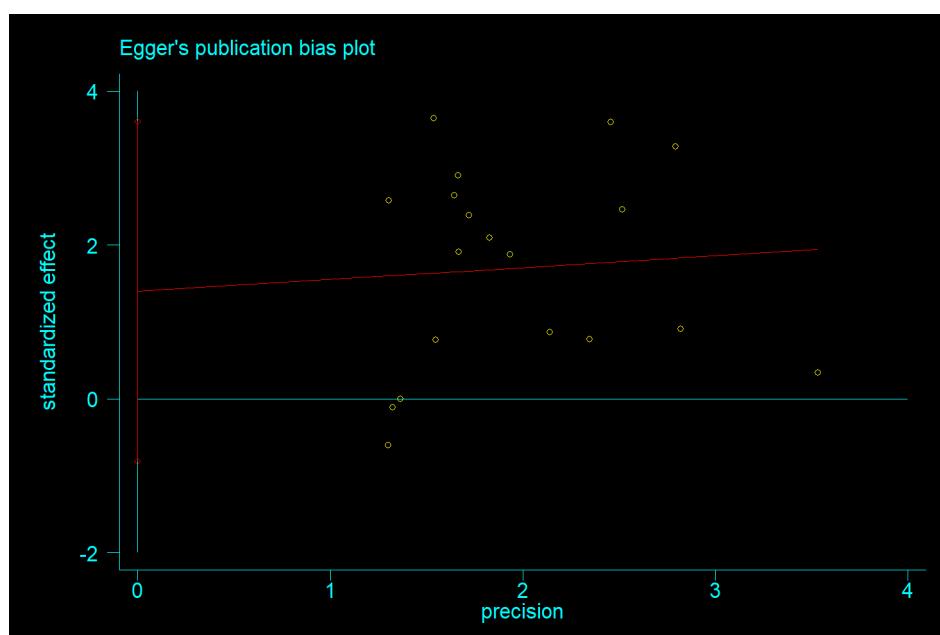



**Figure 1.** Flow diagram showing study eligibility and inclusion.

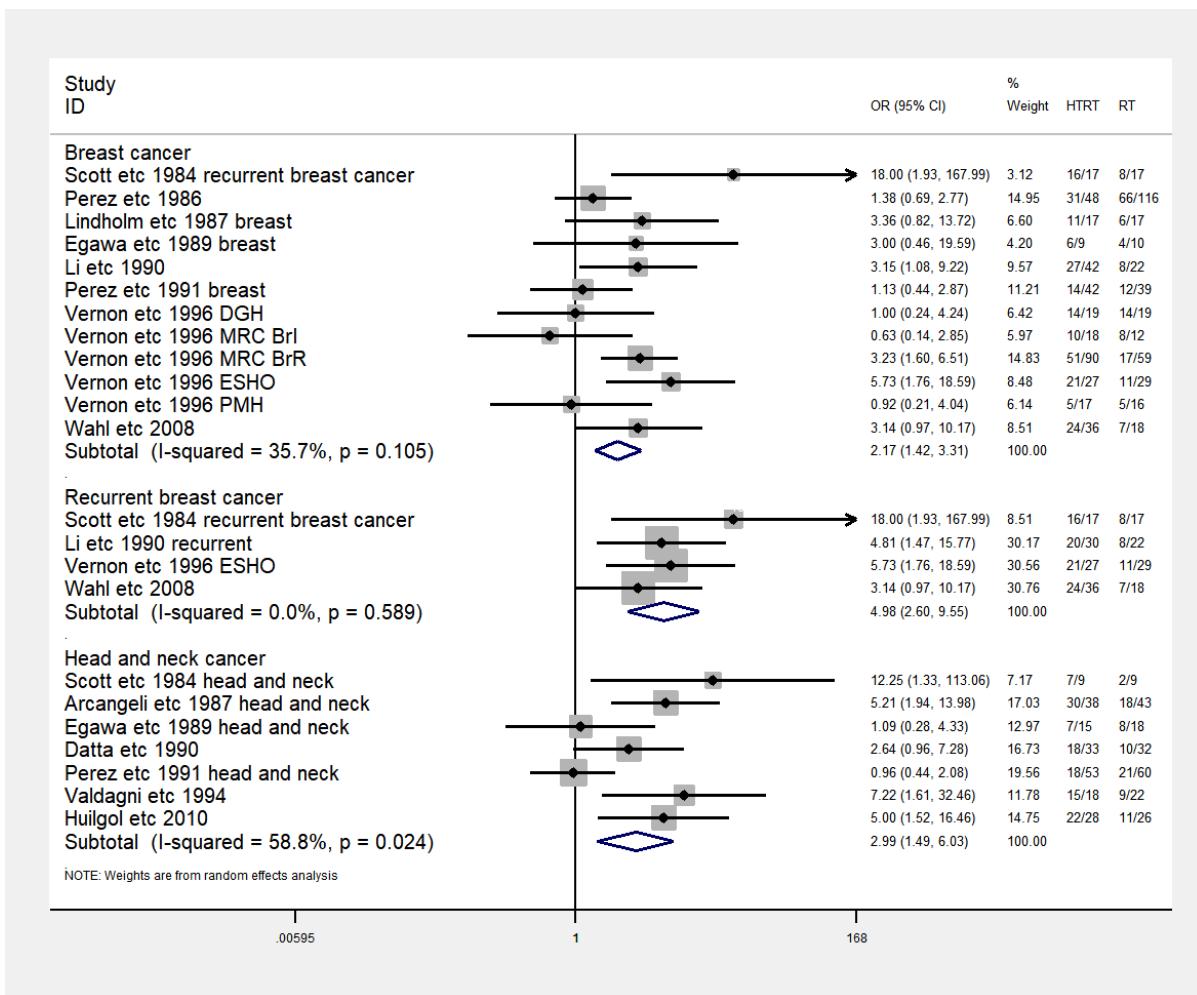
### 3.2. Metaanalysis

The meta-analysis of all patients in 19 groups from 15 articles showed that the addition of HT to RT resulted in significant improvement in CR versus the RT group ( $OR = 2.393$ , 95% CI 1.749–3.274,  $p = 0.000$ ) with high heterogeneity ( $\chi^2 = 33.67$ , degrees of freedom (d.f.) = 18,  $p = 0.014$ ,  $I^2 = 46.5\%$ ; **Figure 2**). The application of the Egger test to individual trials did not reveal any publication bias (95% CI –0.810 to 3.604,  $p = 0.199$ ; **Figure 3**). There was no factor that showed any significant relationship with heterogeneity in individual variable meta-regression analysis to explore the sources of heterogeneity (**Table 2**). We conducted three subgroup analyses in accordance with intended subsets and there was significant improvement in CR at each group ( $OR = 2.170$ , 95% CI 1.424–3.306,  $p = 0.000$ , and  $\chi^2 = 17.10$ , d.f. = 11,  $p = 0.105$ ,  $I^2 = 35.7\%$  for breast cancer;  $OR = 4.980$ , 95% CI 2.595–9.554,  $p = 0.000$ , and  $\chi^2 = 1.92$ , d.f. = 3,  $p = 0.589$ ,  $I^2 = 0.0\%$  for recurrent breast cancer;  $OR = 2.994$ , 95% CI 1.487–6.030,  $p = 0.002$ , and  $\chi^2 = 14.56$ , d.f. = 6,  $p = 0.024$ ,  $I^2 = 58.8\%$  for head and neck cancer; **Figure 4**).

**Table 2.** Results of meta-regression analysis


| Covariate                                      | Coefficient | 95% CI | P     |
|------------------------------------------------|-------------|--------|-------|
| Year of publication                            | 0.011       | -0.038 | 0.060 |
| Country (Asian or not)                         | 0.314       | -0.498 | 1.127 |
| RCT                                            | -0.286      | -0.990 | 0.418 |
| Number of patients                             | -0.003      | -0.009 | 0.002 |
| Primary disease (totally head and neck cancer) | 0.680       | -0.343 | 1.704 |
| Previous RT                                    | -0.516      | -1.543 | 0.512 |
| Type of HT (MV)                                | -0.239      | -1.128 | 1.081 |
| HT after RT                                    | 0.138       | -1.672 | 1.948 |
| Interval $\leq 30\text{min}$ between RT and HT | 0.172       | -0.836 | 1.179 |
| HT sessions (2/wk or not)                      | 0.318       | -0.564 | 1.199 |
| HT duration $\geq 30\text{min}$                | -0.124      | -1.781 | 1.532 |




**Figure 2.** Forest plot of odds ratio (Hyperthermia + Radiation vs Radiation alone). Weights are from random effects analysis. Heterogeneity:  $I^2 = 45.4\%$  (d.f. = 12),  $p = 0.029$ . The solid squares denote the mean difference, the horizontal lines represent the 95% confidence intervals (CIs), and the diamond denotes the weighted mean difference. Abbreviations: OR = odds ratio; HT = hyperthermia; RT = radiation therapy; d.f. = degrees of freedom.

\* Complete response within 3 months of treatment.

\*\* Complete response rates in the comparative study, including 56 tumors in 18 patients.



**Figure 3.** The Egger test for publication bias. 95% confidence intervals (CIs): -1.445–3.550,  $p = 0.379$ .



**Figure 4.** Forest plots of subgroup analyses based on different primary/recurrent disease status. Weights are from random effects analysis. Heterogeneity: breast cancer,  $I^2 = 35.7\%$  (d.f. = 11),  $p = 0.105$ ; recurrent breast cancer,  $I^2 = 0.0\%$  (d.f. = 3),  $p = 0.589$ ; head and neck cancer,  $I^2 = 55.9\%$  (d.f. = 2),  $p = 0.104$ . The solid squares denote the mean difference, the horizontal lines represent the 95% confidence intervals (CIs), and the diamond denotes the weighted mean difference. Abbreviations: OR = odds ratio; HT = hyperthermia; RT = radiation therapy; d.f. = degrees of freedom.

### 3.3. Adverse events

By the overarching patient majority, both modalities of treatment were met with a level of tolerability not evoking substantial acute morbidity manifestations <sup>[24]</sup>. The combined therapeutics manifested local erythema, thermal blistering, facial oedema, and pain occurrences alongside cessation instances, generally grade 1 to 2 in severity, resolved through conservative interventions <sup>[13,15,22,23,25]</sup>. In patients treated by HTRT, instances of ulcerations appeared at a notable frequency (25% versus RT alone's 8%), and incidences of thermal burns were reported in 6% of thermally augmented recipients <sup>[16]</sup>. Observedly, 15/33 tumors exhibited third or fourth-degree integumentary reactions subsequent to administration of hyperthermic treatment via 2450 MHz microwave sans coupling water bag system, juxtaposed against 3/24 under the regimen involving 915 MHz microwaves with a coupling deionized water bag system and refinement of microwave applicators, as well as the temperature control system <sup>[18]</sup>. A discernible association emerges between the average maximum skin dose per treatment and the total skin reaction score <sup>[17]</sup>. Notably, late arousal effects on skin manifest as skin atrophy with depigmentation or pigmentation,

telangiectasia, and fibrosis present minimal differential expression relative to varying treatment regimens [23,25,27]. Furthermore, HT integrated post-RT retains acceptable tolerance without significantly increasing either the clinically meaningful acute or long-term toxicity over HT alone.

## 4. Discussion

This study demonstrated the value of HT as a strategy for improving radiation efficacy with little additional harm. Improved local control in lesions less than 3 cm with HTRT has been elucidated as germane to precise thermal application. The difference between the number of HT treatments was examined with negative results. The group with recurrent breast cancer in this trial, for whom full-dose extra radiation could hardly be given ( $OR = 4.980, p = 0.000$ , and  $\chi^2 = 1.92, I^2 = 0.0\%$ ), showed the most striking clinical benefit from adjuvant HT.

The phenomenon of hypoxic cellular environments engendering radiation resistance stands corroborated. Moderate HT alters tumorous microecology via augmentative shifts in vascular permeability combined with escalated oxygen tension levels. Despite enigmatic nuances veiling its mechanistic underpinnings, synergy in heightening radiative cytotoxicity remains incontrovertibly acknowledged. Combined HT and re-irradiation may be considered as a definitive treatment option for unresectable radiation-associated angiosarcoma of the breast, or as an adjuvant treatment, particularly in cases with positive resection margins or following surgery for local recurrence [28]. HTRT provides long-term, high local control rates with acceptable toxicity for patients with recurrent, newly diagnosed, unresectable, or resected breast cancer at high risk of relapse [29]. A systematic review supports the beneficial role of regional HT in the treatment of high-risk soft tissue sarcomas [30]. In some series, deep regional HT combined with initial transurethral resection and cisplatin-based chemoradiation has improved 5-year overall survival rates by up to 20% in bladder cancer [31]. HTRT with or without chemotherapy can improve local control and survival in various difficult-to-treat cancers and adequate reconstruction of HT applicators for treatment planning can further improve treatment quality.

When combined with standard therapies such as radiation or chemotherapy, HT can enhance tumor control rates and improve patient outcomes. This affordability and adaptability not only address economic constraints but also help reduce disparities in cancer care, ensuring that more patients, regardless of their location, can benefit from effective, comprehensive treatment strategies. There were several limitations in this study. First, it was difficult to establish a heat-response link because the recommended heat treatments in the different experiments varied greatly. Second, our study lacked recent studies about HT, maybe because of a lack of attention to HT in the medical field. A well-designed prospective multicentric trial is warranted to further improve HT performance and promote this technology, especially in underdeveloped areas.

## 5. Conclusion

A well-researched but maybe underutilized method, HT can have a major clinical impact by improving local tumor management. Additionally, the use of HT in conjunction with RT and chemotherapy may become more significant in the anti-cancer therapeutic arsenal.

## Funding

Wenzhou Municipal Science and Technology Bureau (Project No.: Y2023913)

## Disclosure statement

The authors declare no conflict of interest.

## References

- [1] Folefac C, Sinha P, Bassler N, et al., 2025, Pre-Clinical Studies Investigating the Combination of Hypofractionated Radiation with Hyperthermia in a Murine Tumor and Normal Skin. *International Journal of Hyperthermia*, 42(1): 2545400.
- [2] Datta N, Bodis S, 2019, Hyperthermia with Radiotherapy Reduces Tumour Alpha/Beta: Insights from Trials of Thermoradiotherapy vs Radiotherapy Alone. *Radiotherapy and Oncology*, 138: 1–8.
- [3] Thomsen A, Saalmann M, Nicolay N, et al., 2022, Improved Oxygenation of Human Skin, Subcutis and Superficial Cancers Upon Mild Hyperthermia Delivered by WIRA-Irradiation. *Advances in Experimental Medicine and Biology*, 1395: 255–261.
- [4] Kok H, Cressman E, Ceelen W, et al., 2020, Heating Technology for Malignant Tumors: A Review. *International Journal of Hyperthermia*, 37(1): 711–741.
- [5] Ademaj A, Puric E, Timm O, et al., 2023, Real World Analysis of Quality of Life and Toxicity in Cancer Patients Treated with Hyperthermia Combined with Radio(chemo)therapy. *Cancers*, 15(4): 1241.
- [6] Knoblauch M, Werdel C, Arlt Y, et al., 2025, Surgery for Retroperitoneal Soft Tissue Sarcoma Is Safe Following Multimodal Treatment with Regional Hyperthermia. *Annals of Surgical Oncology*, 32(12): 9116–9126.
- [7] Roohani S, Ehret F, Beck M, et al., 2024, Regional Hyperthermia for Soft Tissue Sarcoma – A Survey on Current Practice, Controversies and Consensus among 12 European Centers. *International Journal of Hyperthermia*, 41(1): 2342348.
- [8] Piazena H, Vaupel P, 2025, Hyperhydration of Breast and Skin Cancers: Effects on Thermophysical Tissue Properties in Clinical Hyperthermia with Water-Filtered Infrared-A Radiation (wIRA) – An Updated Review. *International Journal of Hyperthermia*, 42(1): 2519352.
- [9] Crezee J, van Leeuwen C, Oei A, et al., 2016, Biological Modelling of the Radiation Dose Escalation Effect of Regional Hyperthermia in Cervical Cancer. *Radiation Oncology*, 11: 14.
- [10] Kok H, van der Zee J, Guirado F, et al., 2021, Treatment Planning Facilitates Clinical Decision Making for Hyperthermia Treatments. *International Journal of Hyperthermia*, 38(1): 532–551.
- [11] Chi M, Yang K, Chang Y, et al., 2018, Comparing the Effectiveness of Combined External Beam Radiation and Hyperthermia Versus External Beam Radiation Alone in Treating Patients With Painful Bony Metastases: A Phase 3 Prospective, Randomized, Controlled Trial. *International Journal of Radiation Oncology Biology Physics*, 100: 78–87.
- [12] Harima Y, Ohguri T, Imada H, et al., 2016, A Multicentre Randomised Clinical Trial of Chemoradiotherapy Plus Hyperthermia Versus Chemoradiotherapy Alone in Patients with Locally Advanced Cervical Cancer. *International Journal of Hyperthermia*, 32(7): 801–808.
- [13] Jones E, Oleson J, Prosnitz L, et al., 2005, Randomized Trial of Hyperthermia and Radiation for Superficial Tumors. *Journal of Clinical Oncology*, 23: 3079–3085.
- [14] Scott R, Johnson R, Story K, et al., 1984, Local Hyperthermia in Combination with Definitive Radiotherapy: Increased Tumor Clearance, Reduced Recurrence Rate in Extended Follow-Up. *International Journal of Radiation Oncology Biology Physics*, 10: 2119–2123.
- [15] Dunlop P, Hand J, Dickinson R, et al., 1986, An Assessment of Local Hyperthermia in Clinical Practice. *International Journal of Hyperthermia*, 2: 39–50.

[16] Perez C, Kuske R, Emami B, et al., 1986, Irradiation Alone or Combined with Hyperthermia in the Treatment of Recurrent Carcinoma of the Breast in the Chest Wall: A Nonrandomized Comparison. *International Journal of Hyperthermia*, 2: 179–187.

[17] Howard G, Sathiaseelan V, Freedman L, et al., 1987, Hyperthermia and Radiation in the Treatment of Superficial Malignancy: An Analysis of Treatment Parameters, Response and Toxicity. *International Journal of Hyperthermia*, 3: 1–8.

[18] Lindholm C, Kjellén E, Nilsson P, et al., 1987, Microwave-Induced Hyperthermia and Radiotherapy in Human Superficial Tumours: Clinical Results with a Comparative Study of Combined Treatment Versus Radiotherapy Alone. *International Journal of Hyperthermia*, 3: 393–411.

[19] Arcangeli G, Benassi M, Cividalli A, et al., 1987, Radiotherapy and Hyperthermia: Analysis of Clinical Results and Identification of Prognostic Variables. *Cancer*, 60: 950–956.

[20] Egawa S, Tsukiyama I, Watanabe S, et al., 1989, A Randomized Clinical Trial of Hyperthermia and Radiation Versus Radiation Alone for Superficially Located Cancers. *Japanese Journal of Therapeutic Radiology and Oncology*, 1: 135–140.

[21] Li R, Lin S, Zhang T, 1990, Assessment of Combined Thermoradiotherapy in Recurrent or Advanced Carcinoma of the Breast. *Advances in Experimental Medicine and Biology*, 267: 521–523.

[22] Datta N, Bose A, Kapoor H, et al., 1990, Head and Neck Cancers: Results of Thermoradio Therapy Versus Radiotherapy. *International Journal of Hyperthermia*, 6: 479–486.

[23] Perez C, Pajak T, Emami B, et al., 1991, Randomized Phase III Study Comparing Irradiation and Hyperthermia with Irradiation Alone in Superficial Measurable Tumors: Final Report by the Radiation Therapy Oncology Group. *American Journal of Clinical Oncology*, 14: 133–141.

[24] Valdagni R, Amichetti M, 1994, Report of Long-Term Follow-Up in a Randomized Trial Comparing Radiation Therapy and Radiation Therapy Plus Hyperthermia to Metastatic Lymph Nodes in Stage IV Head and Neck Patients. *International Journal of Radiation Oncology Biology Physics*, 28: 163–169.

[25] Vernon C, Hand J, Field S, et al., 1996, Radiotherapy with or without Hyperthermia in the Treatment of Superficial Localized Breast Cancer: Results from Five Randomized Controlled Trials—International Collaborative Hyperthermia Group. *International Journal of Radiation Oncology Biology Physics*, 35: 731–744.

[26] Wahl A, Rademaker A, Kiel K, et al., 2008, Multi-Institutional Review of Repeat Irradiation of Chest Wall and Breast for Recurrent Breast Cancer. *International Journal of Radiation Oncology Biology Physics*, 70: 477–484.

[27] Huilgol N, Gupta S, Sridhar C, 2010, Hyperthermia with Radiation in the Treatment of Locally Advanced Head and Neck Cancer: A Report of Randomized Trial. *Journal of Cancer Research and Therapeutics*, 6: 492–496.

[28] Notter M, Stutz E, Thomsen A, 2021, Radiation-Associated Angiosarcoma of the Breast and Chest Wall Treated with Thermography-Controlled, Contactless wIRA-Hyperthermia and Hypofractionated Re-Irradiation. *Cancers*, 13(15): 3911.

[29] De-Colle C, Beller A, Gani C, et al., 2022, Radiotherapy and Hyperthermia for Breast Cancer Patients at High Risk of Recurrence. *International Journal of Hyperthermia*, 39(1): 1010–1016.

[30] Veltsista P, Oberacker E, Ademaj A, et al., 2023, Hyperthermia in the Treatment of High-Risk Soft Tissue Sarcomas: A Systematic Review. *International Journal of Hyperthermia*, 40(1): 2236337.

[31] Ott O, Gaipl U, Lamrani A, et al., 2023, The Emerging Evidence Supporting Integration of Deep Regional Hyperthermia with Chemoradiation in Bladder Cancer. *Seminars in Radiation Oncology*, 33(1): 82–90.

Publisher's note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.