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Abstract: Against the backdrop of rapid development in China’s construction and infrastructure sectors, discrepancies 
between project budgets and actual costs have become pronounced, manifesting in project overruns and suspensions, 
posing significant challenges. To address inaccuracies in investment targets and operational complexities, this study focuses 
on a beam-bridge construction project in a district of Shijiazhuang city as a case study. Drawing upon historical analogs, 
the project employs a Work Breakdown Structure (WBS) to decompose the engineering works. Building on theories of 
Cost Significant (CS) and Whole Life Costing (WLC), the study constructs Cost Significant Items (CSIs) and develops a 
CNN-BiLSTM-Attention neural network for nonlinear prediction. By identifying significant cost drivers in engineering 
projects, this paper presents a streamlined cost estimation method that significantly reduces computational burdens, 
simplifies data collection processes, and optimizes data analysis and forecasting, thereby enhancing prediction accuracy. 
Finally, validation with real-world cost fluctuation data demonstrates minor errors, meeting predictive requirements across 
project execution phases.
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1. Research background
The entire lifecycle of engineering projects typically includes conceptual (preparation), development 
(construction), maintenance (updates), and termination (dismantling) phases. During this period, the Net 
Present Value (NPV) method aptly captures the cost scenarios across these phases, facilitating the derivation of 
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sub-project life costs and Cost Significant Items (CSIs). CSIs, derived from the “80-20 rule,” extract projects 
that constitute the top 20% of unit costs and contribute to 80% of the total cost, thereby reducing computational 
complexity and eliminating irrelevant factors. Subsequently, using a specific project cycle as an example, 
project components are extracted for cost analysis, focusing on core research elements and employing neural 
networks for cost prediction, which is crucial for analyzing the overall lifecycle costs of projects.

In related research, Duan et al. explored a comprehensive cost prediction method integrating CSIs, Fuzzy 
Inference System (FIS), and WLC, providing a model that combines multiple cost factors for forecasting [1]. 
Liu et al. studied environmental cost estimation methods for green high-speed rail construction, enhancing cost 
prediction accuracy through CS and Backpropagation Neural Network (BPNN) methods [2]. Duan and Xu further 
investigated a road engineering valuation model based on Self Organizing Map-Radial Basis Function (SOM-RBF) 
neural networks, demonstrating the advantages of neural networks in handling nonlinear cost data [3]. Wang et al. 
focused on a dynamic optimization control system for highway construction progress, proposing an integrated 
approach to project management and cost control [4]. Zhou et al. showcased the application of the Complete 
Ensemble Empirical Mode Decomposition with Adaptive Noise-Squeeze-and-Excitation-Convolutional Neural 
Network-Bidirectional Long Short-Term Memory (CEEMDAN-SE-CNN-BiLSTM) model in soybean futures 
price forecasting, offering insights into forecasting complex datasets, albeit with limited direct relevance 
to construction projects [5]. Zhou validated the effectiveness of quantum bee colony algorithms in Building 
Information Modeling (BIM) cost management [6]. Liu and Huang and Peng et al. demonstrated the benefits 
of hybrid predictive models, such as Particle Swarm Optimization-Backpropagation Neural Network (PSO-
BP) and Salp Swarm Algorithm-Least Squares Support Vector Machine (SSA-LSSVM), which excel in 
handling complex datasets and improving prediction accuracy [7,8]. Similarly, Li and Ma successfully merged 
AutoRegressive Integrated Moving Average (ARIMA) with exponential smoothing techniques to speed up 
and refine cost prediction in construction projects [9]. Yong et al. explored the synergy of biogeography-
based optimization with backpropagation neural networks, optimizing investment estimation for university 
construction projects [10]. Fan et al. and Liu et al. further pushed the boundaries by employing ensemble 
models that combine various algorithms, significantly improving the predictive performance in non-linear cost 
data scenarios [11,12]. Lastly, earlier works by Chen et al. and Zhang leveraged machine learning and genetic 
algorithms respectively, to enhance the precision and applicability of cost prediction models across different 
engineering projects [13, 14]. Guo et al. investigated the impact of foundational material projects in construction 
engineering on the overall project cost through urban renewal big data platforms [15].

2. Model building
2.1. Case study: extraction of CSIs 
This case study focuses on the construction of a city viaduct (beam-bridge) on the northern Second Ring Road 
of Shijiazhuang. The total investment of this project is 264.1 million yuan, with a span of 229.7 m and 8 lanes 
in both directions. It includes 17 sets of bridge piers (abutments) and is a typical prestressed concrete-supported 
box girder structure. Based on the list of major engineering material requirements throughout its lifecycle 
(see Table 2.1) and the distribution of engineering cost CSIs (see Table 2.2), this study extracts prefabricated 
component reinforcement bars as the research subject, specifically Φ25HRB400 grade steel (formerly known as 
grade III screw steel).
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Table 2.1. List of main engineering material requirements for the whole life cycle of a bridge

ID Lifecycle stage Primary material(s) Secondary material(s) Additional equipment/tools Remarks

I1 Design stage Prestressed concrete 
beams

Test blocks, 
reinforcement Model test materials

I2 Construction stage (base, 
pier, superstructure) Concrete, gravel, sand Reinforcement, 

anticorrosive coating
Pile foundation machinery, 
molds

Waterproofing in 
base materials

I3 Construction stage (road 
surface, safety facilities) Asphalt, safety barriers Gravel, traffic signs Roller, installation tools Line marking for 

road surface

I4
Maintenance stage 
(routine and major 
repairs)

Inspection equipment, 
replacement parts

Concrete patches, 
bearings Repair materials, joints

Includes 
anticorrosive 
coating

I5 Demolition/remodeling 
stage Demolition machinery Concrete, reinforcement Cutting, recycling processing 

equipment

Table 2.2. Total cost and distribution of CSIs for the beam-bridge project

Method Total sub-
projects CSIs content CSIs cost 

percentage (%)
CSIs project 

percentage (%)
Total cost (billion 

RMB/KM)

Initial 
cost sub-
projects

13

(1) Bridge Pier Foundation Construction
(2) Bridge Abutment Construction
(3) Production and Installation of Prestressed 

Concrete Beams

82.38 19.85 1.16

WLC sub-
projects 19

(1) Bridge Pier Foundation Construction
(2) Bridge Abutment Construction
(3) Production and Installation of Prestressed 

Concrete Beams
(4) Reinforced Concrete Bridge Deck 

Construction
(5) Bridge Routine Maintenance and Upkeep

86.31 17.92 1.28

Sub-
Projects’ 

WLC
26

(1) Bridge Pier Foundation Construction
(2) Bridge Abutment Construction
(3) Production and Installation of Prestressed 

Concrete Beams
(4) Bridge Routine Maintenance and Upkeep

84.57 18.64 1.28

2.2. Constructing a WLCS-based database
(1) Determining discount rate: This study focuses on the quantity lists of completed highway construction 

projects and maintenance costs during operational phases as its research objects. Parameters necessary 
for cost calculation, such as discount rates, were sourced from industry websites like China Highway 
Network and Road Construction Cost Network. The method for determining discount rates varies 
widely. This study adopts a widely accepted academic approach, combining a risk-free rate of return 
and risk premium. The risk-free rate of return excludes risk factors from capital costs. The selection of 
the risk-free rate can refer to information on fixed-rate national bond yields published by “China Bond 
Information Network.” Based on the collected research project periods, an average national bond rate 
of 2.47% over the entire period is selected as the risk-free rate. The risk premium is estimated using the 
Capital Asset Pricing Model, based on selected publicly listed highway companies in China and Hong 
Kong, resulting in a rate of 3.67%. The discount rate is thus the sum of these two values, 6.96%, which 
for convenience can be approximated as 7% for calculations.

(2) Sample selection: The urban highway viaducts primarily include foundations, piers, concrete beams, 
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and other components. Following international and domestic case studies, this research selects 17 
similar projects to build a database, using four newly completed projects as validation samples to assess 
model prediction accuracy.

(3) Determining CSIs: For the sample projects, Cost Significant Items (CSIs) are calculated to determine 
the average per kilometer unit cost for each segment of the viaduct. Subsequently, the WLCS unit 
prices for each segment of the highway are compiled and compared against the average unit cost of 69 
for segmental items. Segments with costs exceeding the average are identified as significant projects.

2.3. CNN-BiLSTM-Attention neural network
In handling time-series data, Convolutional Neural Networks (CNNs) demonstrate significant capabilities in 
feature extraction. However, CNNs have limitations in capturing long-term dependencies within time-series 
data. In contrast, Bidirectional Long Short-Term Memory networks (BiLSTMs) effectively address the issue 
of long-term dependency in time-series data. By employing forward and backward memory units, BiLSTMs 
capture dynamic dependencies of past and future information. By combining these networks, the CNN-
BiLSTM model integrates CNN’s advantages in spatial feature extraction with BiLSTM’s strengths in time-
series prediction, thereby significantly enhancing prediction accuracy.

However, when facing scenarios with numerous features and large datasets, the CNN-BiLSTM model may 
overlook critical feature information at certain key moments, thereby affecting overall learning and prediction 
capabilities. Introducing an Attention mechanism significantly improves upon this limitation. By assigning 
different weights to data from various time points, the Attention layer highlights features in the time-series that 
have the most significant impact on prediction results, further optimizing the model’s performance and prediction 
accuracy. The structure of the CNN-BiLSTM-Attention neural network model is illustrated in Figure 2.1.

Figure 2.1. Structure of the CNN-BiLSTM-Attention neural network model
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3. Model application
3.1. Unit price forecast
Following the extraction of prefabricated component reinforcement bar data, this study expanded its predictions 
by incorporating historical market prices, exchange rates, international iron prices, domestic oil and coal 
prices, regional GDP, and fixed investment in transportation. Daily data from 2012 to 2023 was utilized, with 
the model undergoing 150 iterations. The training and validation data were split in an 8:2 ratio. The training 
process, loss function, and prediction outcomes are depicted in Figure 3.1. Similarly, this approach was applied 
to estimate the costs of other foundational projects within the construction, enabling the derivation of stage-
specific costs and overall lifecycle costs based on the CSIs principle, thereby achieving intelligent estimation.

(a) Neural network training process

(b) Model loss function

(c) Comparison of predicted and actual values

Figure 3.1. Effectiveness of Φ25HRB400 unit price prediction model
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According to the unit price prediction results of Φ25HRB400, the average price error is 50 yuan (RMB), 
with a maximum error of 78 yuan and a minimum error of 20 yuan. The error rate is 1.1%, which meets the 
requirements of high-precision measurement of engineering cost in the new era and can be applied in practical 
engineering.

3.2. Engineering cost estimation
In the study, by referring to historical similar engineering cases and the actual design and construction of this 
project, the WBS-WLC-CSIs method was used to extract significant projects (including bridge pier foundation 
construction, bridge pier construction, production and installation of prestressed concrete beams, bridge deck 
laying, etc.) and conduct key material cost and demand analysis. Furthermore, based on the cost prediction 
of key materials (such as predicting the unit price of Φ25HRB400 and calculating demand), the proportion of 
significant costs, and the proportion of cost in different stages of the entire life cycle of the project, accurate and 
intelligent prediction of the entire life cycle cost of the project can be achieved.

In practical applications, taking the # 15, # 16, and # 17 pier (abutment) sections as an example: the span of 
this area is 30.5 m, and the predicted cost of each pier (including pile foundation, support system, etc.) is 3.2913 
million yuan, 3.4928 million yuan, and 3.3135 million yuan, respectively. The actual cost is 3.3298 million 
yuan, 3.5027 million yuan, and 3.3469 million yuan, with an average prediction error of 0.77%. Within this 
range, the predicted cost per square meter of the bridge deck is 38,200 yuan (including prestressed box girders, 
bridge deck paving, drainage and waterproofing, expansion joints, asphalt, and railings, etc.). The actual cost 
per square meter is 38,900 yuan, with a prediction error of 0.18%. The total cost within this range is predicted 
to be 3.485 billion yuan, with an actual total cost of 3.497 billion yuan and a prediction error of 1.12%. The 
predicted total life cycle cost is 3.602 billion yuan, and the prediction error of the executed part is 1.96%.

In summary, by calculating the total cost of each sub-project (unit price multiplied by demand), and then adding 
up the costs of all sub-projects, the significant project cost is obtained, and the estimated total cost of the entire project 
is obtained. These predicted results are very close to the actual costs, with an error that meets the high-precision cost 
estimation requirements of engineering (< 3%), which can help project managers more effectively control costs and 
budget execution, and improve project management efficiency and engineering cost accuracy.

4. Conclusion
This study successfully achieved intelligent estimation of project foundational costs by integrating CSI theory 
with advanced neural network technology. Focused on a viaduct construction example in a specific area of 
Shijiazhuang, the integration of historical data and relevant economic indicators proved beneficial for accurately 
predicting project costs. This validation underscores the practical application value of intelligent estimation 
methods in construction projects. With ongoing technological advancements and richer data resources, 
intelligent estimation methods based on the CSIs theory hold promise for broader application, revolutionizing 
engineering project management by enhancing cost accuracy and efficiency. This advancement is poised to 
significantly propel sustainable development and innovation within the construction and infrastructure sectors.
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