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Abstract: Subway tunnels often suffer from surface pathologies such as cracks, corrosion, fractures, peeling, water and 
sand infiltration, and sudden hazards caused by foreign object intrusions. Installing a mobile visual pathology sensing 
system at the front end of operating trains is a critical measure to ensure subway safety. Taking leakage as the typical 
pathology, a tunnel pathology automatic visual detection method based on Deeplabv3+ (ASTPDS) was proposed to achieve 
automatic and high-precision detection and pixel-level morphology extraction of pathologies. Compared with similar 
methods, this approach showed significant advantages and achieved a detection accuracy of 93.12%, surpassing FCN and 
U-Net. Moreover, it also exceeded the recall rates for detecting leaks of FCN and U-Net by 8.33% and 8.19%, respectively.
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1. Introduction
There are several types of tunnel defects, including segment leakage, cracks, lining misalignment, track bed 
hollowing, concrete deterioration, and cross-section ovalization. In addition, intrusion boundary phenomena 
caused by construction, support structure deformation, surrounding rock deformation, etc. also occur from 
time to time. At the same time, sudden hazards such as track damage and falling interference objects may also 
occur (Figure 1). If these defects are not dealt with in time, they will have a serious impact on society and the 
economy [1]. Among them, water leakage is one of the most common defects in subway lines [2]. The running 
interval of subway trains is very short. The average interval of the Beijing subway is 3–5 minutes, and it may 
even be shortened to 2 minutes during peak hours. Therefore, timely and fast on-board inspection of tunnels is 
particularly important.

The fully automatic tunnel defect sensing system enables automatic sensing of subway tunnel defects. The 
system consists of two subsystems, namely the mobile visual defect sensing system and the processing feedback 
system (Figure 2).
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Figure 1. Common defects of subway tunnel

Figure 2. Fully automatic tunnel disease visual perception system

In the mobile visual disease sensing system, 8 high-resolution industrial charge-coupled device (CCD) 
cameras are installed on the top, left and right sides, and bottom of the subway train, and the sensing system is 
composed of LED lighting equipment, power supplies, and lifting platforms. By taking a circular shot of the 
tunnel, image data of the entire tunnel is obtained [3]. The image processing technology is used to analyze and 
detect images to detect various diseases in subway tunnels promptly [4]. Then, multiple positioning methods are 
integrated to obtain disease location information in real time. The mobile defect sensing system is connected 
to the train operation central control system, so the location of the defect can be detected based on the train 
mileage and the defects detected. Second, the inertial navigation recorder is used to record the train acceleration 
and angular velocity, and the position of the defect will be calculated based on these two information. By 
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integrating the information obtained by the two aforementioned calculations, the precise location of the defect 
in the tunnel can be obtained and sent to the processing feedback system.

In the processing feedback system, the central control system generates and distributes maintenance tasks 
based on the information provided by the mobile visual defect sensing system. Maintenance personnel can 
then be allocated to repair the subway tunnel defects based on the type and location of the defect to ensure 
operational security and stability. In this process, it is important to accurately categorize the type of disease to 
facilitate repair work.

In recent years, the advancement of computer technology has brought rapid development to visual 
measurement. Machine learning methods can be used to segment the area of water leakage more accurately. 
Xue et al. [5] adopted fully convolutional (FCN) and Dai et al. [6] local-based FCN (R-FCN) to label, classify and 
detect cracks and leaking water. Huang et al. [7] used FCN to perform semantic segmentation of leaking water. 
However, small leaks may be overlooked due to their spatial invariance characteristics [8]. Hu et al. [9] improved 
the MSRCR algorithm to enhance crack images and combined the crack coordinate design algorithm and the 
SVM support vector machine method to classify crack types. Tian et al. [10] used the target detection algorithm 
MaskR-CNN to automatically detect water leakage in two-dimensional images, thereby producing a high-
quality segmentation module. Jiang et al. [11] proposed a subway tunnel crack target detection scheme based 
on deep learning, using a deep convolutional generative adversarial network to achieve sample expansion, 
and using YOLOv5 and digital image processing technology to achieve intelligent identification of subway 
tunnel cracks. However, the network structure does not take into account computational efficiency. Orimasa et 
al. [12] used the improved SSD fully convolutional network structure to complete the intelligent identification 
and category labeling of targets such as cracks. Zhao et al. [13] proposed using the MaskR-CNN network for 
water leakage detection and verified that this model can achieve precise positioning and pixel segmentation of 
water leakage. Zhu et al. [14] proposed an improved YOLOv5 target detection model. According to the position 
and scale characteristics of the target, the original model was optimized around the detection accuracy, model 
parameters, and detection speed. However, due to the complexity of the environment, the detection accuracy is 
still not guaranteed.

There is still room for optimization in the automatic detection of subway tunnel defects in terms of coping 
with complex environmental challenges and detection accuracy. We proposed a fully automatic tunnel disease 
perception system composed of a mobile visual disease perception system and a processing feedback system 
called Automated Subway Tunnel Pathology Detection System (ASTPDS). This system was created based 
on Deeplabv3+, which is used for the semantic segmentation of tunnel diseases. The adoption of StepLR 
and CosLR learning rate decay algorithms makes the model more stable, converges faster, and has better 
generalization performance. The Adam optimizer was used to improve model training speed, performance, 
and generalization capabilities. The focal loss function was used to overcome positive and negative sample 
imbalance. This system could accurately segment leaking water areas in various complex environments and had 
excellent segmentation accuracy.

2. Automatic segmentation method of tunnel diseases  
ASTPDS consists of two modules, in which the encoding area is used to extract high-level semantic 
information; and the decoding area is used to extract low-level semantic information, as shown in Figure 3.
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Figure 3. ASTPDS network structure diagram

The backbone network of ASTPDS consists of the WRes2Net network, which is used to extract leakage 
water feature information. The channel attention mechanism (CA) is used in the coding area to extract the depth 
of the channel to separate the convolutional layer features and achieve accurate allocation of high-response 
channels. Assuming that the high-level semantic information is ψh

c Iw×h×c, ψh
c=[ψ1,ψ2…,ψc], among them,  are 

the width and height of the input feature image respectively, and  is the number of channels.
 fCA(gc, c)=s1{fc2{r[fc1(gc, c1)], c2}　　　　　　　　　　　　(1)

In Formula (1), gc is the feature map after ψh
c average pooling, c is the parameter in the channel attention 

module, s1 is the sigmoid activation function,  fC represents the fully connected layer, and r is the ReLU 
activation function. The CA module outputs fCA and weights the ASSP feature map to obtain the output feature 
map ψh'c, as shown in Formula (2).

ψh'c = ψ
h
c  · fCA　　　　　　　　　　　　　　　　　　　  　(2)

Compared with the encoding area, the decoding area can obtain features such as the location and edge of 
the target information, but there is a large amount of background information, which will affect the accuracy 
of segmentation to a certain extent. The spatial attention mechanism (SA) is used in the decoding area to focus 
on the target feature area, adaptively combine high-level features with low-level features, and use high-level 
features to filter out background information. In this way, global information can be obtained without increasing 
the parameters and semantic segmentation can be improved through global convolutional networks. Besides, 
a two-layer convolution operation is used. The two-layer convolution kernels are 1 × k and k × 1 respectively, 
which are used to obtain key feature information.

 A1 = Conv1[Conv2(ψ
h
c, s1), s2]　　  　　　　　　　　　  　　(3)
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 A2 = Conv2[Conv1(ψ
h
c, s1), s2]   　　　　　　　　　　　   (4)

 fCA(ψh'c  , s1) = S2(A1+A2)                (5)

In Formulas (3)–(5), A1 is the feature map completed by convolution of convolution kernels 1 × 5 and 5 × 
1, A2 is the feature map completed by the convolution of convolution kernels 5 × 1 and 1 × 5, Conv1 is 5×1×C 
convolution kernel, Conv2 is the convolution kernel of 1 × 5 × C, S2 is sigmoid activation, and ψh'c  is obtained by 
SA weighting.

Training complex deep learning models may take a long time. Adding learning rate decay methods and 
optimizers can increase the training efficiency of the model and achieve better training results. The learning rate 
decay method STEPLR is used during the training process to effectively improve the model convergence speed, 
prevent over-fitting, and improve model performance.

        　　(6)

In Formula (6), P represents the current learning rate, L0 is the initial learning rate, g  is the attenuation 
coefficient, e represents the current number of training rounds, and s is the size of the attenuation step. After 
each s training rround the learning rate will attenuate according to the attenuation coefficient g . The learning 
rate decay method CosLR is used to improve the convergence speed and generalization ability of the model.

                (7)

In Formula (7), P represents the current learning rate, L0 is the initial learning rate, e represents the current 
number of training rounds, and T is the total number of rounds of learning rate decay. At the same time, the 
optimizer SGD is used to update the model parameters to minimize the loss function and improve the accuracy 
and generalization ability of the model (Formula [8]).

w = w – l × g      　　 (8)
In Formula (8), w represents the weight parameter of the model, l represents the learning rate, and g  

represents the gradient of the loss function on the weight parameter. The optimizer Adam is used to adaptively 
update the model parameters to improve the convergence speed and generalization ability of the model.

m = b1 × m + (1–b1) × g     　　  (9)
v = b2 × v + (1–b2) × g 2　　    　　(10)

　　　     　　(11)

In Formulas (9)–(11), w represents the weight parameter of the model, p represents the learning rate, g  
represents the gradient of the loss function on the weight parameter, m and v are mean estimate and uncentered 
variance estimate, respectively. sqrt(v) represents the square root of v, while ep is a constant used to stabilize 
the calculation and prevent division by zero.

After testing with the same optimizer, the network performance using CosLR is better. Under the same 
learning decay rate, the network performance of Adam is generally better than SGD.

　     　 (12)

Additionally, training is divided into freezing and unfreezing phases. The focal loss function is used to 



59 Volume 8; Issue 1

solve the imbalance problem of positive and negative samples, as shown in Formula (12).

3. Experiments and data analysis
3.1. Dataset construction
The experimental data set consisted of two parts. The first part was the lining water leakage data set of a subway 
tunnel in Shanghai, and the second part was the subway tunnel lining water leakage data set of a subway 
tunnel in Beijing collected by the mobile visual defect sensing system. The quality, shape, and dimensions of 
data were optimized for the training and application of deep learning models, thereby improving the accuracy 
and reliability of the model. The data were optimized through data source screening, data cleaning, data 
preprocessing, data partitioning, and data annotation.

Through data source screening and cleaning, abnormal and erroneous data were eliminated, and a total of 
4,700 water leakage images were obtained. Data preprocessing included operations like statistical analysis of 
data, feature extraction, and normalization, in which the sizes of the images were standardized to 512 × 512 
pixels. Next, the 4700-image data set was divided into a training data set and a test data set at a ratio of 4:1. 
Finally, manual annotation is used to mark the leakage area, which is regarded as the true value. The entire 
annotation task is completed using the LabelMe annotation tool.

3.2. Experimental program
Due to the complexity of the underground tunnel environment, water leakage exhibits characteristics such 
as irregular horizontal or vertical shapes, making it easy to go unnoticed, along with evidence of manual 
maintenance. This necessitates a network structure with excellent robustness to effectively address these 
challenges. Therefore, we divided the leakage data into five categories: blocky, vertical, horizontal, stain-
covered, and occluded. FCN, U-Net, and ASTPDS were used for segmentation. The semantic segmentation 
effects were also compared to verify the advancement, accuracy, and robustness of ASTPDS.

　　　         　(13)

 　    　　(14)

　　　    　    (15)

 　　　　             (16)

In Formulas (13)–(16), TP refers to the number of pixels of the leakage water image that is correctly 
segmented, FP refers to the number of pixels of the leakage water image that is incorrectly segmented, FN 
refers to the number of unidentified leakage water image pixels in the segmentation result, and TN refers to the 
unidentified leakage water image pixels in the segmentation result. Number of pixels leaking water, GT refers 
to the actual number of pixels leaking water.

Four key indicators, including precision (P), recall rate (R), overall detection accuracy (OAA), and model 
segmentation performance (DSC), were used to evaluate the network model’s effectiveness in identifying 
water leakage. Precision measures the accuracy of positive predictions, while recall rate assesses the model’s 
ability to detect real instances of leakage water. Overall detection accuracy offers a comprehensive assessment, 
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and model segmentation performance evaluates the accuracy of delineating leakage areas. Analyzing these 
indicators provides valuable insights into the model’s performance in detecting water leakage.
3.3. Experimental results and discussion
In order to evaluate the performance of ASTPDS, a comparative test with similar models was designed. A total 
of FCN, U-Net, DeeplabV3+, and other models were selected and evaluated from five technical indicators. The 
calculation results are shown in Table 1.

Table 1. Performance comparison of different algorithms

Network type Accuracy, P (%) Recall, R (%) DSC (%) OAA (%) Time (h)

FCN 87.24 87.15 87.25 99.423 23.51

U-Net 87.56 87.29 88.17 99.641 22.62

ASTPDS 93.12 95.48 94.02 99.941 21.25

All evaluation indicators of ASTPDS were better than other models, with detection accuracy increased 
by 5.88% and 5.56% respectively. The recall rate increased by 8.33% and 8.19%, respectively. The DSN 
representing the model segmentation performance increased by 6.77% and 5.85% respectively. The results 
showed that ASTPDS was superior to other models in all aspects, and its accuracy was significantly higher. As 
shown in Figure 4, ASTPDS performed significantly better than other similar models in terms of ModelLoss 
index. In addition, as shown in Figure 5, after the DSC coefficient stabilizes, its segmentation performance is 
also significantly better than that of similar models.

Figure 4. Model losses for different models Figure 5. DSC comparison of different models

The categorization of water leakage by different systems is shown in Table 2. It can be seen from this 
that compared with block leakage water, U-Net has a better segmentation effect and can identify small leakage 
water blocks, while ASTPDS can segment small leakage more completely. For vertical water leakage, FCN 
segmentation is incomplete and U-Net suffers from overfitting. For horizontal strip water leakage, FCN has the 
problem of over-segmentation. For leaking water covered by stain, redundant background information appeared 
in the U-Net segmentation area, and the outline of the segmentation area was lacking or overfitting, while the 
segmentation by ASTPDS was finer and more complete. For occluded leakage, when the occluded part was 
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unknown, all three models showed good results, but FCN still had the problem of incomplete segmentation.

Table 2. Comparison of semantic segmentation methods for different types of leakage water

Blocky Vertical Horizontal Stain-covered Occluded

Original image

FCN

U-Net

ASTPDS

4. Conclusion
Subway tunnels are often characterized by poor and uneven illumination, coupled with high levels of noise in 
images captured onboard trains. As a result, the accuracy of detecting leaking water, a common issue in subway 
tunnels, tends to be low. Addressing the challenges posed by this complex environment, this paper introduces 
a novel vehicle-mounted pixel-level visual sensing detection method. This method enables fully automatic and 
highly accurate identification and segmentation of tunnel leakage water.

Through extensive experimental testing, the proposed water leakage detection model (ASTPDS) showcased 
superior performance compared to other similar models. Specifically, the detection accuracy improved by 6.74%, 
the recall rate increased by 9.56%, and the segmentation performance saw a notable enhancement of 7.76%.
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