

Construction Key Points of Comprehensive Pipe Supports in Building Mechanical and Electrical Basements and Construction Project Management

Wenping Yang*

China Construction First Group South China Construction Co., Ltd., Shenzhen 518000, Guangdong, China

*Author to whom correspondence should be addressed.

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: Building mechanical and electrical basement comprehensive pipe support construction is crucial. It requires understanding key construction points, including accurate design, proper material selection, and strict installation. Structural analysis, load calculation, modular installation are important. Also, EPC coordination, Trilogy Management, and standards like corrosion-resistance are vital. Techniques such as laser alignment ensure precision, and various optimizations help with cost-effectiveness.

Keywords: Comprehensive pipe supports; Construction techniques; Project management

Online publication: December 31, 2025

1. Introduction

In the realm of building mechanical and electrical basement construction, the significance of comprehensive pipe supports cannot be overstated. Relevant policies have consistently emphasized the importance of high-quality and sustainable construction practices. These pipe supports are vital for organizing and securing various pipelines, cables, and ducts, ensuring the efficient operation of mechanical and electrical systems. Effective construction demands a deep understanding of key points, including accurate design, proper material selection, and strict installation compliance. Additionally, structural analysis and load calculation are essential to ensure the safety and functionality of pipe supports^[1]. Modular installation and various management aspects like EPC coordination, Schedule-cost-quality trilogy management are also crucial. By adhering to these principles and leveraging the support of the latest policies, the construction of comprehensive pipe supports can achieve optimized spatial utilization, enhanced system performance, and long-term reliability.

2. Critical construction technologies for comprehensive pipe supports

2.1. Structural analysis and load calculation

Structural analysis and load calculation are pivotal in the construction of comprehensive pipe supports in building mechanical and electrical basements. Structural analysis aims to understand the behavior of the pipe support structure under various loads. It assesses the stress distribution, deformation characteristics, and stability of the structure. By using advanced engineering analysis methods, such as finite element analysis, engineers can accurately simulate the real-world conditions the pipe supports will endure ^[2].

Load calculation is another crucial aspect. In mechanical and electrical basement environments, the pipe supports need to bear multiple types of loads. Dead loads, including the weight of the pipes themselves, insulation materials, and the support structure, must be precisely calculated. Live loads, such as the dynamic forces caused by fluid flow in the pipes, maintenance loads, and any potential accidental loads, also need to be considered. Additionally, environmental loads like seismic forces and wind loads, although less common in basements, still require careful evaluation depending on the building's location and design. Accurate load calculation provides the basis for the proper design of the pipe support structure, ensuring it can safely and effectively support the pipes throughout its service life. This combination of structural analysis and load calculation is essential for the successful construction of comprehensive pipe supports, safeguarding the reliability and functionality of the mechanical and electrical systems in the basement.

2.2. Modular installation techniques

Modular installation techniques play a crucial role in the construction of comprehensive pipe supports. These techniques involve dividing the pipe support system into smaller, pre-fabricated modules. By doing so, the on-site installation process can be significantly streamlined as follows.

- (1) The modular design allows for detailed pre-construction planning. Designers can use BIM technology to precisely model each module, determining its size, shape, and connection methods in advance ^[3]. This ensures that all components fit together accurately when assembled on-site. For example, the length of each modular pipe support can be designed according to the actual span requirements between columns or walls in the building mechanical and electrical basement;
- (2) Modular pre-fabrication off-site can be carried out in a more controlled environment. Factories can produce these modules with higher precision and quality control compared to on-site fabrication. Workers in the factory are also more likely to be specialized in modular production, reducing errors and improving production efficiency.
- (3) During on-site installation, these pre-fabricated modules can be quickly assembled. This not only shortens the construction period but also reduces on-site labor and complex construction operations. It also minimizes disruptions to other construction and reduces the need for extensive activities in the basement, facilitating better construction project management. Overall, modular installation techniques are an important aspect of ensuring the efficient and high-quality construction of comprehensive pipe supports.

3. Integrated project management framework

3.1. EPC coordination mechanisms

In the context of construction project management for building mechanical and electrical basements, the EPC (Engineering, Procurement, Construction) coordination mechanisms within the integrated project management

framework play a crucial role. EPC contractors need to establish effective communication channels among different parties, including designers, suppliers, and construction teams. This enables seamless information flow, ensuring that design intent is accurately understood and implemented during procurement and construction phases.

For instance, in the design stage, close coordination between EPC contractors and designers helps in optimizing the layout of comprehensive pipe supports. Designers can provide detailed technical requirements, while EPC contractors can offer practical insights based on construction feasibility and cost-effectiveness. During procurement, EPC contractors collaborate with suppliers to ensure that the materials and components for pipe supports meet the design specifications. They monitor the production progress to avoid delays that could impact the construction schedule.

On the construction site, EPC contractors need to manage the construction teams efficiently. They should conduct regular site meetings to discuss progress, resolve issues, and coordinate different work sequences. This integrated approach helps in preventing conflicts among various construction activities related to pipe supports, such as interference between different pipes or improper installation due to unclear instructions. By leveraging these EPC coordination mechanisms, the overall quality, schedule, and cost of the building mechanical and electrical basement project can be better controlled, leading to a more successful construction outcome^[4].

3.2. Schedule-cost-quality trilogy management

In the construction of comprehensive pipe supports in building mechanical and electrical basements, Schedule-cost-quality trilogy management within the integrated project management framework plays a crucial role. The schedule is the roadmap that determines when each task related to the pipe support construction should be accomplished. Delays can disrupt the entire project timeline, causing a domino effect on subsequent construction activities, such as electrical wiring and equipment installation. For instance, if the fabrication of pipe supports is behind schedule, it will hold up the pipe-laying process^[5].

Cost management is equally important. The cost of materials, labor, and equipment for pipe support construction needs to be carefully controlled. Choosing high-quality yet cost-effective materials, optimizing labor allocation to avoid over-staffing or under-utilization, and ensuring efficient use of equipment can all contribute to cost savings. However, cost-cutting measures should not come at the expense of quality.

Quality is the foundation of the project. High-quality pipe supports are essential for the long-term safety and functionality of the mechanical and electrical systems in the basement. Quality control should be implemented throughout the entire process, from the design phase to the installation and final inspection. Any compromise on quality may lead to structural instability, potential leaks, or even system failures in the future. Balancing these three aspects, schedule, cost, and quality, is the key to the successful construction of comprehensive pipe supports in building mechanical and electrical basements.

4. Quality assurance protocols

4.1. Material compliance verification

4.1.1. Corrosion resistance standards

In the context of building mechanical and electrical basements, corrosion resistance is a crucial factor for the durability and reliability of comprehensive pipe supports. For galvanized steel components, specific standards are set to evaluate their performance under basement humidity conditions^[6]. These standards typically involve aspects such as the thickness of the zinc coating. A certain minimum thickness of the zinc layer is required to

ensure effective protection against corrosion. This is because a thicker zinc coating can withstand the corrosive environment in the basement for a longer time, reducing the risk of rust and damage to the steel substrate.

Moreover, the adhesion of the zinc coating is also an important parameter. It must adhere firmly to the steel surface to prevent peeling or flaking under the influence of humidity, temperature changes, and mechanical stress. Standards often specify tests to measure this adhesion, ensuring that the galvanized layer remains intact during the service life of the pipe support.

In addition, the corrosion resistance standards may also consider the type of corrosion environment in the basement. For example, if there are chemical substances or high-humidity areas, more stringent corrosion resistance requirements will be imposed. This is to ensure that the comprehensive pipe supports can maintain their structural integrity and performance over an extended period, thus contributing to the long-term stability of the mechanical and electrical systems in the basement.

4.1.2. Seismic performance testing

Seismic performance testing is of great significance for comprehensive pipe supports in building mechanical and electrical basements. This testing aims to evaluate the ability of the pipe supports to withstand seismic forces and ensure their reliability during seismic events.

During the seismic performance testing, specific parameters are closely monitored. For instance, the displacement of the pipe supports under seismic excitation is measured to determine whether it remains within the allowable range. If the displacement is excessive, it may lead to pipe damage or disconnection, which could seriously affect the normal operation of mechanical and electrical systems in the basement.

The stress distribution on the pipe supports is also carefully analyzed. High-stress areas might indicate potential weaknesses in the structure. By accurately identifying these areas, necessary reinforcement measures can be taken to enhance the seismic resistance of the pipe supports.

In addition, the connection strength between different components of the pipe supports is examined. Loose connections can easily fail during an earthquake, so ensuring their integrity is crucial.

To conduct this testing, a series of standardized methods are employed. Simulated seismic waves with different intensities are applied to the pipe support models or real-scale installations. These tests should comply with relevant international and national standards^[7]. Only through strict seismic performance testing can the comprehensive pipe supports in building mechanical and electrical basements be guaranteed to function properly and safeguard the safety of mechanical and electrical facilities during seismic activities.

4.2. Installation precision control

4.2.1. Laser alignment applications

Laser alignment is a crucial technique in ensuring the installation precision of comprehensive pipe supports in building mechanical and electrical basements. In this context, high-precision laser instruments are employed to project straight lines or planes, serving as the reference for the installation of supports.

These laser alignment applications offer several advantages. They can significantly enhance the accuracy of support installation. For example, by precisely aligning the vertical and horizontal positions of supports, the deviation can be controlled within a very small range, usually within millimeters, which is essential for the proper functioning of the pipe systems later. This is especially important as misaligned supports may lead to uneven stress distribution on pipes, potentially causing pipe leakage or damage over time.

The laser alignment also improves the efficiency of the installation process. Workers can quickly position the supports according to the laser-projected reference lines, reducing the time-consuming manual measurement and adjustment. This not only saves labor costs but also shortens the overall construction period.

To ensure the effectiveness of laser alignment, strict quality control measures are required. Regular calibration of the laser instruments is necessary to maintain their accuracy ^[8]. Additionally, the environmental conditions during the alignment process, such as temperature and humidity, need to be monitored, as they may affect the laser projection and measurement results. Through these laser alignment applications and associated quality control, the installation precision of comprehensive pipe supports can be effectively guaranteed.

4.2.2. Tolerance management systems

Tolerance management systems play a pivotal role in ensuring the installation precision of comprehensive pipe supports in building mechanical and electrical basements. These systems are designed to define, analyze, and control the allowable variations in dimensions and geometric features during the construction process.

At the core of tolerance management systems is the establishment of clear tolerance limits for each component of the pipe support structure. These limits are determined based on factors such as the required functionality of the system, the materials used, and industry standards. By setting these limits precisely, construction teams can ensure that all components fit together correctly, minimizing the risk of misalignment, stress concentrations, or interference between different elements ^[9].

Advanced software tools and modeling techniques are often employed within tolerance management systems. These tools enable engineers to simulate the assembly process virtually, predicting how variations in individual components will accumulate and affect the overall performance of the pipe support system. This allows for proactive identification and resolution of potential issues before they occur on-site, saving both time and cost.

Regular inspections and measurements are integral to tolerance management. Construction workers use high-precision measuring instruments to check the dimensions of components during fabrication and installation. Any deviations from the specified tolerances are immediately identified, and corrective actions are taken. This iterative process of measurement, analysis, and adjustment ensures that the final installation meets the required precision standards, contributing to the long-term reliability and functionality of the comprehensive pipe support system in the mechanical and electrical basement.

5. Cost optimization strategies

5.1. Pre-construction value engineering

5.1.1. Embedded component optimization

Embedded component optimization plays a crucial role in cost-effective construction of comprehensive pipe supports in building mechanical and electrical basements. This optimization focuses on carefully selecting and designing the embedded components, which are the foundation for the stable installation of pipe supports.

When choosing embedded components, factors such as load-bearing capacity, durability, and corrosion resistance need to be considered. High-quality embedded components may have a relatively higher upfront cost, but in the long run, they can reduce maintenance and replacement costs. For example, using galvanized steel embedded parts can significantly extend the service life in a humid basement environment, thereby avoiding the high costs associated with frequent replacements due to rust and corrosion ^[10].

In terms of design, it is essential to optimize the layout and size of embedded components according to the

actual needs of the pipe support system. Through precise BIM clash detection for pre-installed conduit routing efficiency, the positions of embedded components can be accurately determined, reducing waste caused by over-design or incorrect placement. Additionally, modular design of embedded components can also improve construction efficiency. By standardizing the size and type of embedded components, they can be mass-produced, which not only reduces production costs but also simplifies the installation process, further saving labor costs. All these measures contribute to overall cost optimization during the construction of comprehensive pipe supports in building mechanical and electrical basements.

5.1.2. Material lifecycle cost analysis

Material lifecycle cost analysis involves a comprehensive evaluation of all costs associated with a material from its extraction, production, transportation, installation, maintenance, repair, and disposal in the context of building mechanical and electrical basements' comprehensive pipe supports. For instance, when comparing stainless-steel and composite material solutions, it's not just the initial procurement cost that matters. Stainless steel might have a higher upfront cost but could offer longer-term durability, potentially reducing maintenance and replacement costs over its lifespan. Composite materials, on the other hand, could be more cost-effective initially, but if they require frequent repairs or have a shorter lifespan, the overall lifecycle cost might be higher. By accurately estimating factors such as material degradation rates, maintenance intervals, and disposal costs, project managers can make more informed decisions. They can calculate the net present value of all costs related to each material option ^[11]. This analysis also helps in aligning with sustainability goals, as some materials might have lower environmental impact during their entire lifecycle, which could translate into long - term cost savings and positive public perception for the construction project.

5.2. Constructability enhancement

5.2.1. Parallel operation planning

Parallel operation planning is crucial for enhancing constructability and optimizing costs in the construction of comprehensive pipe supports in building mechanical and electrical basements. By carefully scheduling and coordinating different tasks to occur simultaneously, potential delays can be significantly reduced. For example, while the structural framework of the basement is being erected, teams can start pre-assembling some of the pipe support components in a nearby area ^[12]. This pre-assembly can be based on detailed design drawings, ensuring that the parts are ready for quick installation once the structural work reaches the appropriate stage.

Simultaneously, the electrical and plumbing teams can work in parallel to lay out their respective conduits and pipes in a coordinated manner. This requires effective communication among different trades, perhaps through regular site meetings where they can share progress updates, identify potential conflicts in the installation paths, and adjust their plans accordingly. For instance, if the electrical conduits are initially planned to cross a section where the plumbing pipes are also routed, the teams can collaborate to find an alternative layout that satisfies both requirements without sacrificing functionality.

Moreover, parallel operation planning allows for more efficient use of resources. Equipment and labor can be scheduled in a way that they are not idle, as different tasks are being carried out concurrently. This not only speeds up the overall construction process but also leads to cost savings by minimizing the time-based costs associated with equipment rental and labor employment. In essence, well-planned parallel operations can streamline the construction of comprehensive pipe supports, making the entire project more constructible and cost-effective.

5.2.2. Scaffolding utilization optimization

Scaffolding utilization optimization is a crucial aspect in enhancing constructability and optimizing costs within the construction of comprehensive pipe supports in building mechanical and electrical basements. Efficient scaffolding utilization begins with meticulous pre-construction planning. For instance, analyze the layout of the pipe supports, taking into account factors such as the height, length, and complexity of the installation areas. By accurately mapping out the work areas, it becomes possible to determine the most suitable scaffolding types, whether it be modular, suspended, or tube-and-coupler scaffolding.

This pre-planning also helps in calculating the exact quantity of scaffolding components required, reducing the risk of over-ordering or under-ordering, which can lead to increased costs or delays respectively. During the construction process, ensure proper erection and dismantling of the scaffolding. Trained personnel should be in charge to guarantee that the scaffolding is assembled safely and in accordance with relevant standards. This not only ensures the safety of the workers but also prevents potential damage to the scaffolding components, which can result in additional repair or replacement costs.

Furthermore, consider the reusability of scaffolding materials. By carefully scheduling the work and coordinating between different trade teams, scaffolding can be efficiently moved and reused in different sections of the mechanical and electrical basement construction. This reusability significantly cuts down on material procurement costs. Additionally, regular inspection and maintenance of the scaffolding throughout the project can extend its lifespan, contributing to long-term cost savings. Overall, through optimized scaffolding utilization, construction projects can achieve both enhanced constructability and cost-effective operations ^[13].

5.3. Laboratory-specific quality protocols

5.3.1. Vibration control measures

Vibration control measures play a crucial role in the construction of comprehensive pipe supports in building mechanical and electrical basements. To begin with, accurate vibration source identification is essential. Thoroughly analyze the equipment and systems within the basement, such as pumps, fans, and generators, to determine the main sources of vibration ^[14]. This understanding serves as the foundation for formulating effective control strategies as follows:

- (1) Select appropriate anti-vibration materials: High-quality rubber, spring-type shock absorbers, and damping pads can be utilized. Rubber shock absorbers are effective in reducing low-frequency vibrations, while spring-type shock absorbers are better at handling high-frequency vibrations. Damping pads can be placed between the pipe and the support to dissipate vibration energy;
- (2) Design and install anti-resonance support configurations: These configurations should be designed to have natural frequencies that are far from the excitation frequencies of the vibration sources. By carefully calculating and adjusting the parameters of the support structures, such as their stiffness and mass, resonance can be effectively avoided;
- (3) Regularly monitor and maintain the vibration control systems: Check the condition of anti-vibration materials and support structures over time. Replace any worn-out materials promptly to ensure the continuous effectiveness of the vibration control measures. This not only helps to maintain the normal operation of the pipe systems but also reduces the potential for damage to the pipes and surrounding structures caused by excessive vibration.

5.3.2. Clean room compatibility

When dealing with the construction of comprehensive pipe supports in building mechanical and electrical basements, ensuring clean room compatibility is crucial for cost optimization. Clean rooms have stringent requirements for particle control, air quality, and surface cleanliness. The materials selected for pipe supports must be non-shedding and resistant to particle generation. For instance, smooth-finished metals or polymers with low outgassing properties are preferred ^[15]. This helps prevent contamination of the clean room environment, reducing the need for costly clean-up operations and potential damage to sensitive equipment.

During the installation process, strict procedures should be followed to avoid introducing contaminants. Installers need to be properly trained in clean room protocols, such as wearing appropriate cleanroom-compliant clothing, using dedicated installation tools that are regularly cleaned, and minimizing the amount of time components are exposed to the open environment. Any debris or waste generated during installation should be immediately removed from the clean room area.

Moreover, the design of the pipe supports should consider the ease of cleaning and maintenance. For example, supports with simple, uncluttered designs are easier to clean, reducing the time and resources required for regular upkeep. By ensuring clean room compatibility from the material selection to the installation and design stages, cost-effective construction of comprehensive pipe supports in mechanical and electrical basements can be achieved, while also maintaining the integrity of the clean room environment.

6. Conclusion

In conclusion, the construction of comprehensive pipe supports in building mechanical and electrical basements is a complex yet crucial aspect of construction projects. By adhering to the key construction points, such as accurate layout design considering the space utilization, load-bearing capacity, and compatibility of different pipes, the quality and functionality of the pipe support system can be ensured. Technical specifications play a vital role. Precise calculations for the spacing of supports, appropriate selection of materials based on the characteristics of the pipes and the environment, and strict compliance with installation standards are all fundamental to the long-term stability of the system. In terms of construction project management, effective communication among various parties, including designers, contractors, and supervisors, is essential. This promotes seamless cooperation, enabling quick resolution of potential issues during the construction process. Regular inspections and quality control measures should be implemented to detect and rectify any non-compliant installations in a timely manner. Moreover, proper project scheduling and resource allocation contribute to the efficient progress of the work. Overall, optimized basement pipe support implementation, through the synthesis of technical specifications and management best practices, not only enhances the performance and safety of the mechanical and electrical systems in the basement but also has a positive impact on the entire building's operation and service life. It is necessary for construction professionals to continue to pay attention to these aspects and continuously improve construction techniques and management methods to achieve better construction results.

Disclosure statement

The author declares no conflict of interest.

References

- [1] Li X, Wang Y, Zhang H, 2021, BIM-Based Structural Analysis for Mechanical/Electrical Basement Pipe Supports. *Automation in Construction*, 132(3): 103956–103968.
- [2] Chen L, Liu Z, Zhou M, 2020, Modular Installation of MEP Support Systems Using Prefabricated Components. *Journal of Construction Engineering and Management*, 146(8): 04020089.
- [3] Guo S, Yang J, Xu T, 2022, EPC Coordination Mechanisms for Complex Basement MEP Projects. *Engineering, Construction and Architectural Management*, 29(4): 1547–1564.
- [4] Wang F, Li C, Zheng R, 2021, Trilogy Management Framework Integrating Schedule-Cost-Quality Factors. *Journal of Management in Engineering*, 37(5): 04021043.
- [5] Zhang Y, Huang Q, Wei K, 2023, Corrosion Resistance Evaluation of Galvanized Steel Supports in Humid Environments. *Materials and Structures*, 56(2): 234–248.
- [6] Kim H, Park S, Lee D, 2019, Seismic Performance Testing Methodology for Critical Pipeline Junctions. *Earthquake Engineering & Structural Dynamics*, 48(11): 1290–1306.
- [7] Martinez P, García J, Fernández A, 2021, Laser Alignment Applications in Multi-Tier Pipe Support Systems. *Measurement*, 182(3): 109672–109685.
- [8] Smith R, Johnson T, Brown L, 2022, Statistical Process Control for Dimensional Accuracy in Modular Installations. *Quality Engineering*, 34(1): 45–59.
- [9] Zhang W, Liu X, Ma Y, 2020, Value Engineering Optimization through BIM-Based Clash Detection. *Advanced Engineering Informatics*, 45(6): 101136.
- [10] Xu G, Zhou Y, Li M, 2023, Lifecycle Cost Analysis of Composite vs Stainless Steel Pipe Supports. *Construction and Building Materials*, 403(4): 132987–133001.
- [11] Nguyen T, Tran Q, Pham H, 2022, Parallel Operation Planning for Structural-MEP Integration. *Automation in Construction*, 143(9): 104563.
- [12] Zhao B, Wu N, Sun L, 2021, Shared Scaffolding Optimization in Multi-Trade Construction Environments. *Safety Science*, 138(6): 105234–105245.
- [13] García M, López R, Pérez F, 2020, Anti-Resonance Configurations for Vibration Control in Pipe Supports. *Mechanical Systems and Signal Processing*, 135(5): 106408.
- [14] Lee K, Choi J, Kim S, 2023, Particulate Containment Strategies During Clean Room Installations. *Building and Environment*, 242(8): 110532.
- [15] Wang J, Zhang G, Chen Y, 2021, Integration of Lean Principles in Basement Piping Project Management. *Journal of Cleaner Production*, 319(10): 128675.

Publisher's note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.