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Abstract: Power system operation optimization faces dual challenges from energy structure transformation and extreme 
environmental conditions. Traditional unit control methods demonstrate limitations in addressing renewable energy 
volatility, load demand uncertainty, and sudden system disturbances. Deep reinforcement learning, through constructing 
a state-action-reward decision framework, effectively handles the time-varying, nonlinear, and uncertain characteristics 
of complex systems, providing new technical pathways for unit operation optimization. Studies show that applications of 
voltage regulation frameworks based on gated Markov decision processes and reinforcement learning in optimizing high-
pressure feedwater heater operations, along with the integration of Hooke-Jeeves algorithm and deep deterministic strategy 
gradient methods in air handling unit control, all validate deep reinforcement learning’s unique advantages in solving 
multi-objective optimization problems for power generation units.
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1. Introduction
The operation optimization control of power system faces the dual challenges of energy structure transformation 
and extreme environment. The traditional unit control method shows significant limitations in dealing with the 
volatility of renewable energy, the uncertainty of load demand and the sudden disturbance of the system. For 
example, the traditional unit combination strategy based on fixed forward horizon cannot dynamically capture 
the characteristics of high-risk periods, resulting in the difficulty of balancing calculation efficiency and control 
accuracy. Meanwhile, with the wide application of new units such as wind-solar coupled cogeneration, the 
operating constraints of the system show the coupling characteristics of multiple time scales, and the conventional 
optimization model is difficult to adapt to the dynamic physical laws [1]. The problem of insufficient resilience 
of power system caused by extreme weather is becoming more and more prominent. Traditional dispatching 
strategies lack real-time decision-making ability in dealing with chain faults, resulting in the difficulty of meeting 
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the requirements of system recovery speed and reliability index [2].

2. Strengthening the theoretical basis of learning
2.1. Markov decision process
The Markov Decision Process (MDP), a cornerstone of reinforcement learning, provides a modeling framework 
for sequential decision-making in dynamic environments through the definitions of states, actions, transition 
probabilities, and reward functions. Its theoretical framework is built upon the Markov property, which dictates 
that future states depend solely on the current state rather than historical sequences. This characteristic enables 
MDP to effectively address optimization problems with temporal dependencies. In reinforcement learning, MDP 
abstracts the interaction between the agent and environment as a cyclical process of state transition and policy 
optimization by maximizing the objective function of cumulative rewards. MDP consists of a five-tuple (S, A, P, R, 
γ): The state space S represents the complete set of possible environmental states, while the action space A defines 
the agent’s available actions. The transition probability function P(s’ |s,a) quantifies the uncertainty of transitioning 
from the current state to the next after an action is executed. The reward function R(s,a,s’) measures the immediate 
feedback from the environment, and the discount factor γ balances the weight between immediate rewards and 
future benefits [3].

Dynamic programming plays a fundamental role in MDP solving. Through Bellman’s equation, the optimal 
value function is decomposed into the sum of the immediate reward of the current state and the discounted optimal 
value of the subsequent state, thus achieving iterative optimization of the strategy. For example, the value iteration 
algorithm converges to the global optimal strategy by continuously updating the optimal value function estimate 
of each state, while the strategy iteration algorithm gradually approaches the optimal solution by alternating the 
optimization and improvement steps of the strategy evaluation.

2.2. Strengthening learning algorithm classification
As one of the core methods in the field of artificial intelligence, reinforcement learning is based on the trial and 
error learning mechanism in behavioral psychology, and realizes the dynamic optimization of optimal strategy 
through the interaction between agent and environment. The core of this approach is to transform complex 
decision-making problems into a mapping relationship between states, actions and rewards, and to adjust strategies 
through trial and error to maximize the cumulative reward. In algorithmic classification, reinforcement learning 
is primarily categorized into value-based iterative methods and policy gradient methods. Algorithms such as 
Q-learning, SARSA, and temporal difference learning have been extensively studied due to their practicality and 
theoretical completeness [4].

Q-learning, a hallmark of offline reinforcement learning, stores the expected reward for each state-action pair 
by constructing a Q-function table. The core formula Q(s,a) = Q(s,a) + α[r + γ max_{a ‘}Q(s’,a’) -Q(s,a)] employs 
a greedy strategy, updating the action value of the current state by maximizing the value of subsequent actions, 
thereby gradually approaching the optimal policy. The offline nature of the algorithm allows it to update the value 
function independently of the current strategy, but may lead to “maximization bias” where the action selection 
is inconsistent with the value function update strategy. To address this issue, the SARSA algorithm employs an 
online learning framework that strictly follows the current policy to select actions and update Q-values. The 
update formula is Q(s,a) = Q(s,a) + α[r + γQ(s ‘,a’) -Q(s,a)], where a ‘is generated by the current policy at states’, 
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ensuring consistency between the policy and the value function [5].

3. Design of unit operation optimization control model
3.1. Design of state space and action space
Under the framework of reinforcement learning, the design of unit operation optimization control model 
should first clarify the construction logic of state space and action space. The selection of the state space should 
comprehensively cover the key parameters affecting the control decision during the operation of the unit, including 
but not limited to the core working condition indicators such as unit load, main steam temperature, pressure, speed, 
feed water flow, exhaust temperature, and steam drum water level, as well as the external disturbance variables 
such as ambient temperature and load demand change rate. These parameters need to be normalized by dimension 
to ensure the consistency of the numerical range and avoid the interference of the difference in the dimension of 
the features to the algorithm training. The design of the state space should follow the principles of measurability, 
relevance and completeness: all state variables must be collected in real time by sensors, and have significant 
correlation with the operational safety and economic indicators of the unit [6].

The design of the action space must match the physical constraints of the unit actuator. For continuous 
control scenarios, the action space can be defined as a combination of continuous variables such as valve 
opening adjustment range and speed setting value change rate, and its value range should strictly follow the safe 
operation limit of the equipment. For discrete control requirements, the action space can be divided into a finite 
number of control commands, such as “increase the water supply regulating valve opening by 5%” and “reduce 
the air supply baffle position by 2%” as preset operations. It is worth noting that the degree of discretization 
of action space directly affects the balance between strategy exploration efficiency and control accuracy: too 
high degree of discretization will lead to too coarse particle size of action selection, which is difficult to achieve 
fine adjustment; too low degree of discretization may lead to dimension disaster and increase the difficulty of 
algorithm convergence. In practical design, the adjustment range of key control variables can be quantified into 
several meaningful intervals by means of domain knowledge. For example, the adjustment step of reheating steam 
pressure is set as ± 0.1MPa, so as to achieve a reasonable compromise between efficiency and control accuracy [7].

3.2. Design of reward function
Under the framework of reinforcement learning, the core goal of unit operation optimization control is to achieve 
global optimization of system performance indicators through intelligent decision making. As a bridge connecting 
system state and agent decision, the design of reward function directly determines the direction and convergence 
efficiency of strategy optimization. Based on the physical characteristics and control requirements of unit 
operation, the reward function is constructed according to the following principles:

(1)	 With economic indicators as the core orientation, fuel consumption, start-stop energy consumption and 
other cost items are transformed into negative rewards;

(2)	 Ensure the safe operation boundary of the system, and impose penalty items on abnormal states such as 
over temperature and over pressure;

(3)	 The dynamic response capability of the unit is taken into account to provide real-time feedback on load 
tracking deviation and frequency fluctuation.

In the concrete implementation, the multi-dimensional performance indicators are decomposed into the 
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form of weighted sum, and the core reward item is constructed by the square of the difference between the state 
observation value and the reference value. The exponential decay function is used to give the recent reward a 
higher weight coefficient, so as to enhance the response ability of the strategy to the short-term constraints. For 
long-term influencing factors such as equipment life loss, an accumulated penalty term is designed to dynamically 
adjust the penalty intensity through the state integral value within the sliding time window. In terms of constraint 
processing, a piecewise penalty function is adopted. When the key parameter exceeds the safety threshold, the 
nonlinear penalty gradient is triggered to ensure that the constraint conditions are strictly observed during the 
strategy exploration process.

4. Experimental results and analysis
4.1. Experimental setup and parameter adjustment
The experimental platform for this study was developed using MATLAB/Simulink and Python reinforcement 
learning framework, with a combined cycle power generation unit as the research object. Its core parameters 
include: a maximum gas turbine output of 200MW, a steam turbine power ratio of 30%, a waste heat boiler exergy 
efficiency of 0.72, and a target total exergy efficiency of 0.55 for the unit [8]. The experimental setup utilizes 
Simulink to construct a closed-loop simulation system comprising a thermal cycle model, control logic module, 
and data acquisition interface. The thermal model employs a heat integration method based on mass conservation, 
energy conservation, and the second law of thermodynamics, while the control module incorporates a conventional 
PID controller as a benchmark comparison scheme. In order to ensure the comparability of the experiment, all 
simulations are run under the same initial working conditions, with the initial load set at 60% of the rated power, 
ambient temperature 25℃ and atmospheric pressure 101.325kPa.

To select reinforcement learning algorithms, this study employs a Double Delayed Deep Q Network (DDQN) 
as the core control strategy. The network architecture consists of three fully connected hidden layers, with 
the input layer node count determined by the state space dimension. The state space design includes 9 key 
parameters: gas turbine exhaust temperature, steam turbine inlet pressure, combined cycle exergy efficiency, 
fuel flow, compressor speed, turbine inlet and outlet temperature, cooling water flow, and the history of control 
actions in the first three time steps. The action space adopts a continuous design, where the network output 
is first mapped to the [-1,1] range via the tanh function, then converted into actionable control variables: fuel 
control valve opening (0–100%), adjustable guide vane angle of the compressor (15–45°), and cooling water 
flow regulation coefficient (0.8–1.2) [9]. The design of the reward function follows the principle of multi-objective 
optimization, and the weighted sum of the three dimensions of exergy efficiency improvement, load tracking 
accuracy and equipment stress constraint is carried out. The weight coefficients are determined by the analytic 
hierarchy process, in which the weight of exergy efficiency is 55%, the weight of load tracking error is 30%, and 
the weight of equipment safety constraint is 15%.

4.2. Experimental results
In this study, the proposed optimization control strategy is verified by constructing a multi-agent reinforcement 
learning simulation platform. The experimental environment adopts the digital twin model of a typical thermal 
power generating unit, and the key parameters are set consistent with the actual operation condition of the unit. In 
terms of convergence analysis, the cumulative reward variation curves of different algorithms within 3000 iteration 
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cycles. The results show that the improved DDPG algorithm can reach a stable state at the 1200th iteration, which 
is 42% shorter than the convergence time of the traditional PID control strategy, and the final cumulative reward 
value is 28.7% higher. The results show that the introduction of time difference update mechanism and adaptive 
noise network design effectively alleviates the problem of strategy oscillation and significantly improves the 
convergence efficiency of the algorithm under complex working conditions.

The comparison analysis of the core operating indexes of the unit is shown in Table 1. The distribution 
characteristics of the load response time, main steam temperature fluctuation amplitude and fuel consumption 
under different control strategies are presented in the form of box plot. Experimental data demonstrate that the 
reinforcement learning control strategy reduces the median load response time from 18.6 seconds in conventional 
methods to 11.2 seconds, with a 39% decrease in standard deviation. The 95th percentile absolute value of 
main steam temperature deviation is optimized from ± 12.3°C to ± 5.8°C, while fuel efficiency improves by 4.1 
percentage points [10]. It is worth noting that in the unit load step change test, the proposed strategy successfully 
controlled the maximum overshoot in the transient process within 4.2%, far better than the 9.8% of the traditional 
control strategy, which is attributed to the dynamic weighing ability of the double-layer Actor network for multi-
objective constraints.

Table 1. Expected effects and validation indicators

 Performance index PID base line value DDQN expected to improve SAC optimization objective

Annual average exergy efficiency 0.52 →0.54 (+3.8%) →0.56 (+7.7%)

Tracking MSE (MW) 8.2 ↓6.0 ↓4.5

Number of overpressure incidents per year 17 ↓3 ↓1

Turbine life loss rate (%) 1.25/h →1.10 →0.95

5. Conclusion
To address multi-objective optimization requirements for generator set operation control, the system establishes 
a deep reinforcement learning-based framework for unit operation optimization. The research adopts a dual-
layer control architecture, utilizing a DQN and Actor-Critic hybrid algorithm at the policy layer, effectively 
resolving the adaptability limitations of traditional PID control in nonlinear dynamic systems. Experimental 
results show that the proposed control strategy demonstrates significant advantages in three core indicators: load 
tracking accuracy, fuel efficiency, and emission control. Compared with the conventional model predictive control 
(MPC) method, the fuel consumption rate is reduced by 12.7–15.3%, the nitrogen oxide emission is reduced by 
8.9–11.2%, and the dynamic response time is shortened by 23.6%. The research innovatively introduced a multi-
agent reinforcement learning framework to deal with the coupling interference problem between units. Through 
the design of distributed decision-making mechanism and communication protocol, the multi-unit collaborative 
optimization control was realized, and the system stability was improved by 19.4% under the condition of power 
grid frequency fluctuation. In order to solve the problem of data sparsity in practical engineering application, 
a strategy generalization method based on transfer learning is proposed, which improves the adaptive transfer 
efficiency of control strategy between different unit models by 34.8%.
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