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Abstract: This article reviews the application and progress of deep learning in efficient numerical computing methods. 
Deep learning, as an important branch of machine learning, provides new ideas for numerical computation by constructing 
multi-layer neural networks to simulate the learning process of the human brain. The article explores the application 
of deep learning in solving partial differential equations, optimizing problems, and data-driven modeling, and analyzes 
its advantages in computational efficiency, accuracy, and adaptability. At the same time, this article also points out the 
challenges faced by deep learning numerical computation methods in terms of computational efficiency, interpretability, 
and generalization ability, and proposes strategies and future development directions for integrating with traditional 
numerical methods.
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1. Introduction
With the rapid development of big data and artificial intelligence, deep learning, as an important branch of machine 
learning, has demonstrated strong application potential in many fields. Numerical computation, as a fundamental 
tool in scientific research and engineering practice, directly affects the efficiency and accuracy of problem-solving. 
Introducing deep learning into the field of numerical computing not only provides new ideas for traditional numerical 
methods but also has the potential to solve some difficult problems that traditional methods find difficult to overcome. 
Therefore, exploring efficient numerical computation methods based on deep learning is of great significance, as it 
will bring new opportunities and challenges to scientific computing and engineering applications.

2. Overview of the fundamentals and applications of deep learning in numerical 
computing
2.1. The basic principles and framework of deep learning
Deep learning, as an important branch of machine learning, focuses on simulating the learning process of the 
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human brain by constructing multi-layer neural networks. A neural network consists of an input layer, a hidden 
layer, and an output layer, each layer containing multiple neurons connected by weights and biases. The activation 
function plays a non-linear transformation role in neural networks, enabling the network to fit complex functional 
relationships. The loss function is used to measure the difference between the predicted value and the true value 
of the model, while the optimization algorithm minimizes the loss function by continuously adjusting weights and 
biases, to train an accurate model as shown in Figure 1 [1].

Figure 1. Convolutional neural network

Currently, deep learning frameworks such as TensorFlow and PyTorch have become the preferred tools for 
researchers and engineers. These frameworks provide rich APIs and flexible computational graph mechanisms, 
making deep learning implementation more efficient and convenient.

2.2. Traditional methods and challenges of numerical computation
Numerical computation is a fundamental tool in scientific research and engineering practice, and traditional 
methods such as finite difference, finite element, and spectral methods have achieved significant results in 
practical applications. However, these methods face many challenges when dealing with high-dimensional and 
nonlinear problems. Although the finite difference method is simple and easy to understand, it is more difficult to 
handle complex boundary conditions and irregular regions; Although the finite element method applies to various 
complex-shaped regions, it requires a large amount of computation and has low efficiency in solving highly 
nonlinear problems; Although spectral methods have high accuracy, they require functions to have sufficient 
smoothness and are cumbersome for handling nonperiodic boundary conditions as shown in Figure 2 [2].

Figure 2. Finite difference method
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2.3. The application prospects of deep learning in numerical computing
Deep learning has shown great potential in the field of numerical computing. In solving partial differential 
equations, deep learning can approximate the true solution by learning solutions that satisfy the equation and 
boundary conditions, thus overcoming the limitations of traditional methods in solving complex equations. In 
terms of optimization problems, deep learning can utilize its powerful function-fitting ability to find optimal or 
approximate optimal solutions, improving solving efficiency [3]. In addition, deep learning can also be combined 
with data-driven modeling to improve the accuracy of numerical predictions by integrating observational data and 
physical models. These application examples fully demonstrate the broad prospects and enormous potential of 
deep learning in numerical computing.

3. The application of deep learning in solving partial differential equations
3.1. The principle of using deep neural networks to solve partial differential equations
Deep neural networks, especially Physical Information Neural Networks (PINNs), provide a novel and effective 
method for directly solving partial differential equations. PINNs directly embed the physical laws, boundary 
conditions, and initial conditions of partial differential equations into the loss function of neural networks. During 
the training process, the neural network continuously adjusts its parameters through learning to minimize the loss 
function and approximate solutions that satisfy the equation and boundary conditions as shown in Figure 3.

Figure 3. Physical information neural network

PINNs use automatic differentiation techniques to calculate the derivatives of neural network outputs 
concerning input variables, which are used to construct residual terms for partial differential equations. By 
minimizing the sum of squared residuals (i.e. loss function), the neural network gradually learns solutions that 
satisfy the equation and boundary conditions. This method avoids the grid partitioning and discretization process 
in traditional numerical methods and has higher flexibility and adaptability [4].

3.2. Deep learning for solving fluid dynamics problems
The Navier-Stokes equations in fluid dynamics problems are a typical class of partial differential equations, and 
their solution is of great significance for understanding the laws of fluid motion. Traditional numerical methods 
such as finite element and finite difference methods face problems such as high computational complexity and 
grid dependence when solving Navier-Stokes equations. Deep learning, especially PINNs, provides new ideas for 
solving such problems as shown in Figure 4.
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Figure 4. Solving fluid dynamics equations with neural networks

Studies have shown that by constructing appropriate neural network structures and embedding physical 
information from Navier-Stokes equations, PINNs can accurately predict the velocity and pressure fields of 
fluid flow. Compared with traditional numerical methods, PINNs have significant advantages in computational 
efficiency, especially in complex scenarios such as high Reynolds number flows. In addition, PINNs can also 
handle problems with irregular boundaries and complex geometric shapes, further expanding their application 
scope.

3.3. The application of deep learning in the inverse problem of partial differential 
equations
The inverse problem of partial differential equations is an important class of problems in scientific research and 
engineering practice, such as parameter identification, source term inversion, etc. This type of problem is typically 
ill-posedness, meaning that the existence, uniqueness, and stability of the solution are difficult to guarantee. 
Traditional methods often face many difficulties when dealing with such problems.

Deep learning, especially combined with PINNs, provides a new approach for solving inverse problems 
of partial differential equations. By constructing a neural network containing the parameters to be solved and 
embedding the physical information of the inverse problem into the loss function, the neural network can gradually 
learn solutions that satisfy the conditions of the inverse problem during the training process. This method can not 
only effectively handle the ill-posedness in inverse problems, but also improve the accuracy and efficiency of the 
solution. For example, in parameter identification problems, PINNs can accurately identify unknown parameters in 
partial differential equations, providing accurate basic data for subsequent numerical simulations and predictions [5].

4. Efficient algorithm of deep learning in optimization problems
4.1. The foundation of deep learning optimization algorithms
In deep learning, optimization algorithms are key to training neural networks. Gradient descent is one of the most 
fundamental optimization algorithms, which calculates the gradient of the loss function and updates the network 
parameters in the opposite direction of the gradient to minimize the loss function. However, gradient descent 
may face problems such as slow convergence speed and getting stuck in local optima when solving large-scale 
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optimization problems.
To overcome these limitations, researchers have proposed various improved optimization algorithms, such as 

the Adam algorithm. The Adam algorithm combines the advantages of the momentum method and the RMSprop 
method and dynamically adjusts the learning rate to accelerate convergence speed and improve stability. When 
solving large-scale optimization problems, improved optimization algorithms such as Adam’s algorithm usually 
perform better than traditional gradient descent methods [6].

4.2. The application of deep learning in combinatorial optimization problems
The combinatorial optimization problem is an important type of optimization problem, such as the traveling 
salesman problem, backpack problem, etc. This type of problem usually has a discrete solution space, and the 
number of solutions increases exponentially with the size of the problem, so traditional methods are often difficult 
to solve.

Deep learning provides new solutions for combinatorial optimization problems. By constructing an 
appropriate neural network structure and embedding the constraints and objective functions of combinatorial 
optimization problems into the loss function of the neural network, deep learning can gradually learn solutions that 
satisfy the problem conditions during the training process. For example, in the traveling salesman problem, deep 
learning can find the optimal or approximately optimal travel path by learning the distance relationships between 
cities and the patterns of travel routes [7]. In the backpack problem, deep learning can determine the optimal item 
selection plan by learning the relationship between the value and weight of items.

4.3. The practice of deep learning in function optimization
Function optimization problems are another important type of optimization problem, especially nonlinear function 
optimization problems. Traditional methods often face challenges such as complex function landscapes, slow 
convergence speed, and susceptibility to local optima when dealing with such problems.

Deep learning, through its powerful function-fitting ability, can learn the features of function landscapes, 
thereby accelerating convergence to the global optimal solution. For example, when solving complex nonlinear 
function optimization problems, a deep neural network can be constructed to approximate the objective function, 
and the gradient information of the neural network can be used to guide the optimization process. By continuously 
learning the changing patterns of the function landscape, deep learning can gradually adjust the optimization 
direction, avoid falling into local optima, and accelerate convergence to the global optimum. This practice has 
achieved significant results in multiple fields, demonstrating the enormous potential of deep learning in function 
optimization problems.

5. Data-driven deep learning numerical computation methods
5.1. Basic principles of data-driven modeling
Data-driven modeling is a method of constructing and training numerical models based on large amounts of data. 
Unlike traditional methods that rely on physical laws and mathematical equations for modeling, data-driven modeling 
mainly relies on statistical patterns and pattern recognition of data. In deep learning, this is typically achieved 
by building deep neural networks and training them using large amounts of data. These networks are capable of 
automatically extracting features from data and learning complex mapping relationships behind the data [8].

Compared to traditional physical models, data-driven models are more flexible and able to adapt to more 
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complex and changing environments. However, they also depend on the quality, and quantity of data, and may 
lack physical interpretability. However, data-driven models and physical models are not completely opposed, and 
the two can be integrated to leverage their respective strengths.

5.2. The application of deep learning in data assimilation
Data assimilation is a technique that combines observational data with physical models to improve the accuracy 
of numerical predictions. Deep learning plays an important role in data assimilation. By constructing deep neural 
networks, observation data can be integrated into the prediction process of physical models, thereby correcting the 
initial conditions or parameters of the model and improving the accuracy of predictions as shown in Figure 5.

　

Figure 5. Data assimilation

Data assimilation techniques have been widely applied in fields such as meteorological forecasting and ocean 
simulation. For example, in meteorological forecasting, deep learning can integrate satellite observation data, 
ground observation station data, and meteorological models to provide more accurate weather forecasts. In ocean 
simulation, deep learning can integrate buoy data, satellite remote sensing data, and ocean circulation models to 
improve the accuracy of ocean state prediction.

5.3. Practice of data-driven deep learning in uncertainty quantification
Uncertainty, such as randomness and fuzziness, often accompanies numerical calculations. Deep learning has 
shown great potential in dealing with these uncertain problems. By constructing appropriate neural network 
structures, deep learning can estimate the uncertainty of prediction results and provide confidence intervals or 
probability distributions [3].

For example, in financial risk assessment, deep learning can estimate the uncertainty of investment returns, 
providing decision-makers with risk assessment and decision support. In environmental science, deep learning 
can estimate the uncertainty of pollutant concentration prediction and provide a scientific basis for environmental 
policy formulation. These practices indicate that data-driven deep learning has broad application prospects in 
uncertainty quantification.

6. Challenges and future prospects of deep learning numerical computing methods
6.1. Current challenges in deep learning numerical computation methods
Although deep learning has shown great potential in the field of numerical computing, it still faces many 
challenges. Firstly, computational efficiency is a prominent issue. Deep learning models, especially deep neural 
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networks, typically require a significant amount of computational resources and time to train, which is particularly 
evident when dealing with large-scale numerical computing problems. Secondly, the lack of interpretability is also 
a major drawback of deep learning numerical computation methods. Deep learning models are often seen as ‘black 
boxes’, and their decision-making processes lack clear physical or mathematical explanations, which limits their 
application in certain fields that require interpretability. Finally, generalization ability is also a concern for deep 
learning numerical computation methods. Although deep learning performs well on training data, its performance 
may significantly decrease when faced with unseen data [9].

These challenges have had a profound impact on the development of deep learning numerical computation 
methods. The issue of computational efficiency limits the application of deep learning in real-time or large-scale 
numerical computing; Insufficient interpretability hinders the promotion of deep learning in certain fields; The 
issue of generalization ability requires researchers to pay more attention to the generalization performance and 
robustness of the model.

6.2. Fusion strategy of deep learning and other numerical methods
To overcome the challenges of deep learning numerical computation methods, researchers have begun to explore 
ways to integrate deep learning with traditional numerical methods. For example, deep learning models can be 
combined with traditional numerical methods such as finite element and finite difference, utilizing the powerful 
learning ability of deep learning to improve the computational efficiency and accuracy of traditional methods.

In specific cases, this fusion method has demonstrated significant advantages. For example, in fluid dynamics 
simulations, introducing deep learning models to accelerate the solving process can significantly improve 
computational efficiency; In solid mechanics analysis, using deep learning models to optimize the generation of 
finite element meshes can improve computational accuracy [10]. These practices indicate that the integration of deep 
learning and traditional numerical methods is an effective way to improve numerical computing performance.

6.3. Future prospects of deep learning numerical computation methods
Looking ahead to the future, the development of deep learning in the field of numerical computing will show 
the following trends: firstly, computational efficiency will continue to improve. Through algorithm optimization 
and hardware acceleration, the computational efficiency of deep learning numerical computing methods will be 
significantly improved; Secondly, interpretability will gradually increase, and researchers will strive to develop 
more interpretable deep learning models to meet the demand for interpretability in certain fields; Thirdly, the 
generalization ability will receive more attention, and researchers will place greater emphasis on the model’s 
generalization performance and robustness to improve the practicality of deep learning numerical computation 
methods [11].

To promote the development of deep learning numerical computing methods, it is recommended to strengthen 
interdisciplinary cooperation and promote the deep integration of deep learning and traditional numerical methods; 
At the same time, research and development investment should be increased to support the application and 
promotion of deep learning numerical computing methods in more fields.

7. Conclusion
Deep learning has shown great potential in the field of numerical computing, bringing innovation to 
traditional numerical methods. Despite facing challenges such as computational efficiency, interpretability, 
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and generalization ability, the application prospects of deep learning numerical computing methods are broad 
through the integration with traditional numerical methods and optimization of algorithms and hardware. In 
the future, with the continuous advancement of technology, deep learning will play an important role in more 
scientific computing and engineering applications, providing efficient and accurate solutions for solving 
complex problems.
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