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Abstract: Underwater images are inherently degraded by color distortion, contrast reduction, and uneven brightness, 
primarily due to light absorption and scattering in water. To mitigate these challenges, a novel enhancement approach is 
proposed, integrating Local Adaptive Color Correction (LACC) with contrast enhancement based on adaptive Rayleigh 
distribution stretching and CLAHE (LACC-RCE). Conventional color correction methods predominantly employ 
global adjustment strategies, which are often inadequate for handling spatially varying color distortions. In contrast, the 
proposed LACC method incorporates local color analysis, tone-weighted control, and spatially adaptive adjustments, 
allowing for region-specific color correction. This approach effectively enhances color fidelity and perceptual naturalness, 
addressing the limitations of global correction techniques. For contrast enhancement, the proposed method leverages the 
global mapping characteristics of the Rayleigh distribution to improve overall contrast, while CLAHE is employed to 
adaptively enhance local regions. A weighted fusion strategy is then applied to synthesize high-quality underwater images. 
Experimental results indicate that LACC-RCE surpasses conventional methods in color restoration, contrast optimization, 
and detail preservation, thereby enhancing the visual quality of underwater images. This improvement facilitates more 
reliable inputs for underwater object detection and recognition tasks.
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1. Introduction
Underwater imaging is frequently degraded by blurring, color distortion, and reduced contrast, primarily due to 
the distinct optical properties of the underwater environment. The selective absorption of light in water leads to 
severe attenuation of red wavelengths, whereas blue and green wavelengths penetrate more effectively, resulting 



141 Volume 9, Issue 2

in a characteristic bluish-green appearance in underwater images. Furthermore, suspended particles and water 
molecules contribute to multiple scattering of light, which significantly diminishes image contrast. Additionally, 
underwater currents and environmental disturbances often induce camera instability, further degrading image 
quality and leading to blurring of object edges and contours. These degradation effects severely compromise 
feature representation in underwater images, creating significant challenges for downstream computer vision 
tasks, such as object detection, image segmentation, and recognition. Consequently, underwater image restoration 
and enhancement remains a topic of substantial practical significance. Existing approaches in this field can be 
generally categorized into three main types: non-physical model-based enhancement methods, physical imaging 
model-based restoration methods, and deep learning-based enhancement techniques.

Physical model-based underwater image restoration methods reconstruct degraded images by formulating 
underwater optical imaging models and estimating key parameters based on predefined priors. The restoration 
process is then conducted through inverse computation techniques. These methods primarily follow two technical 
pathways: one approach exploits the statistical characteristics of the darkest pixels to estimate and invert the dark 
channel, thereby facilitating image restoration. Notable algorithms include the Dark Channel Prior (DCP) [1] and 
its enhanced variant, the Underwater Dark Channel Prior (UDCP) [2]. Another approach to underwater image 
restoration relies on parameter estimation within underwater optical imaging models. Yu et al. [3] proposed a 
dehazing algorithm incorporating dual transmission maps, designed to adapt to varying underwater environments. 
Liu and Liang [4] employed grayscale morphological closing operations to estimate background light, effectively 
mitigating interference from white objects. Furthermore, they introduced a new underwater light attenuation prior 
(NULAP) and an adjusted reverse saturation map (ARSM) to enhance the accuracy and refinement of transmission 
map (TM) estimations. While these methods have demonstrated effectiveness in recovering color fidelity and fine 
details, their stability and consistency across diverse underwater conditions require further refinement.

Non-physical model-based underwater image enhancement methods focus on direct pixel-level enhancement 
without relying on physical imaging models. For instance, Song and Wang [5] employed white balance-based color 
correction to compensate for color distortions induced by medium attenuation. Additionally, they incorporated 
contrast and spatial cues through a saliency-weighted coefficient update strategy, aiming to achieve high-quality 
image fusion and enhancement. Zhang et al. [6] proposed an approach that enhances both global and local contrast 
using a dual-histogram-based iterative thresholding method and a limited histogram approach. To further refine 
the enhanced images, they employed a multi-scale fusion (MSF) strategy and a multi-scale unsharp masking 
(MSUM) technique. However, these methods may exhibit limited adaptability to diverse and complex underwater 
environments, often resulting in over-enhancement artifacts.

In recent years, deep learning-based image enhancement approaches have proliferated. For instance, Yan et 
al. [7] introduced a model-driven CycleGAN that integrates a physical model, enhancing both the effectiveness 
and generalization capability of traditional GAN-based methods in complex real-world underwater environments. 
Additionally, Wang et al. [8] developed UPGformer, a physics-guided transformer architecture designed to improve 
depth estimation accuracy. Ren et al. [9] introduced an enhanced Swin-Convs Transformer Block (RSCTB) 
designed to reinforce local attention mechanisms across both channel and spatial domains. This approach enhances 
the model’s ability to perceive and restore images degraded by non-uniform medium distributions. However, deep 
learning-based methods demand extensive training data and impose high computational costs, while acquiring 
high-quality underwater datasets remains a critical challenge.

Underwater images frequently suffer from color distortion, contrast degradation, and uneven brightness 



142 Volume 9, Issue 2

distribution due to the selective absorption and scattering of light in water. To address these challenges, this study 
introduces a novel Local Adaptive Color Correction (LACC) method, integrated with a contrast enhancement 
framework leveraging adaptive Rayleigh distribution stretching and Contrast Limited Adaptive Histogram 
Equalization (CLAHE). This approach establishes a comprehensive underwater image enhancement pipeline. 
Unlike traditional global color correction techniques, which often fail to effectively adapt to spatially varying color 
distortions, the proposed method provides localized corrections, mitigating issues of under-correction or over-
correction. Experimental results indicate that the proposed approach surpasses conventional methods in color 
fidelity and detail preservation.

2. Methods
Underwater images are inherently degraded by color distortion, contrast attenuation, and uneven brightness 
distribution, primarily caused by light absorption and scattering in water. To mitigate these effects, this study 
introduces a LACC method, integrated with a contrast enhancement technique that leverages adaptive Rayleigh 
distribution stretching and CLAHE.

Traditional color correction techniques primarily rely on global adjustments, which are often insufficient for 
addressing spatially varying color distortions. This limitation may result in some regions retaining noticeable color 
shifts while others experience excessive correction. The proposed LACC method incorporates local color analysis, 
tone-weighted control, and spatially adaptive adjustments, enabling region-specific correction and producing more 
perceptually natural and realistic color restoration. For contrast enhancement, the proposed method integrates 
adaptive Rayleigh distribution stretching and CLAHE. Initially, the global mapping properties of the Rayleigh 
distribution are leveraged to enhance overall contrast, followed by an adaptive truncation strategy to regulate the pixel 
stretching range. Subsequently, CLAHE is applied to refine local contrast adaptively, and a weighted fusion strategy 
is employed to synthesize the final enhanced image. The methodological flowchart is illustrated in Figure 1.

Figure 1. Methodological flowchart

2.1. Local Adaptive Color Correction (LACC) method
To enhance the accuracy of color distortion correction, this study employs a local standard deviation ratio approach 
to compensate for attenuation across color channels. The entire image is segmented into multiple small regions, 
where local statistical characteristics of both the luminance and color channels are computed independently. The 
luminance channel is defined as follows:

 (1)

where Ir, Ig, and Ib, correspond to the pixel values of the red, green, and blue channels, respectively, while 
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Il(i,j) represents the luminance of the given pixel.
Subsequently, the standard deviation of each color channel within the local window is calculated as follows:

 (2)

where K is the total number of pixels within the window, and Īc represents the mean intensity of the 
corresponding color channel.

Using the standard deviation ratio, the color channel values are modified to align more closely with the 
luminance channel:

 (3)

A smaller standard deviation in a color channel indicates lower variation, allowing for stronger alignment 
with the luminance channel. Conversely, a larger standard deviation suggests greater variability, warranting less 
adjustment to maintain the channel’s original characteristics.

Despite compensating for color channel attenuation, regional variations in color distribution may still persist. 
To mitigate this issue, this study adopts a Local Histogram Matching (LHM) approach to ensure a more uniform 
color distribution across different regions of the image.

A reference set of high-quality underwater images is selected, from which the Cumulative Distribution 
Function (CDF) is computed as a standard. The histogram of each local window in the target image is then 
calculated and adjusted through CDF-based matching:

 (4)

where Hinput denotes the histogram of the input image, and  represents the inverse cumulative mapping of 
the reference image histogram.

During color correction, some regions may undergo overcompensation, resulting in color distortion. For 
example, blue tones may become overly dominant in certain areas, while red tones may be excessively enhanced. 
To mitigate this effect, this study introduces a Tone Weighting mechanism, ensuring that the correction magnitude 
is proportional to the deviation of the original tone. The tone weighting is formulated as follows:

 (5)

where  denotes the mean intensity of the local window,  represents the mean intensity of the entire image, 
and Wc(i,j) regulates the extent of color compensation.

The final color adjustment is expressed as:

 (6)

In areas with significant color distortion, a lower Wc value leads to stronger color adjustments. Due to the 
uneven illumination in underwater environments, this study applies Spatially Adaptive Gamma Correction (SAGC) 
to enhance darker regions while mitigating overexposure in brighter areas.
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2.2. Underwater image contrast enhancement based on adaptive Rayleigh distribution 
stretching and CLAHE
This study proposes a contrast enhancement approach that integrates adaptive Rayleigh distribution stretching with 
CLAHE. The method first leverages the global mapping properties of the Rayleigh distribution to improve overall 
contrast, while an adaptive truncation strategy is employed to constrain the pixel stretching range. Subsequently, 
CLAHE is applied for localized contrast enhancement, and a weighted fusion strategy is utilized to synthesize the 
final enhanced image.

To improve global contrast and ensure a more uniform brightness distribution, the Rayleigh distribution is 
employed for pixel value stretching. The probability density function (PDF) of the Rayleigh distribution is given 
by:

 (7)

where I denotes the pixel value of the input image, and σ serves as the distribution control parameter.
To accommodate diverse underwater lighting conditions, an adaptive computation method is utilized for 

determining σ:

 (8)

Where Imax, Imin denote the maximum and minimum pixel values of the image, respectively, Iavgrepresents the 
average pixel value, and k serves as the adjustment factor.

The Rayleigh distribution mapping function is formulated as follows:

 (9)

This transformation adjusts the pixel values to follow the Rayleigh distribution after enhancement, effectively 
enhancing overall contrast.

In the pixel stretching process, direct mapping may cause excessive enhancement of certain pixel values, 
leading to brightness distortion or loss of details. To address this, the Otsu thresholding method is utilized to 
determine the optimal pixel adjustment range, ensuring that the enhanced image preserves a well-balanced 
brightness distribution. The adjustment range is formulated as follows:

 (10)

 (11)

where Ic,min and Ic,max denote the minimum and maximum pixel values following the Rayleigh distribution 
transformation. Tlow and Thigh are derived from the Otsu thresholding method, representing the adaptive brightness 
range tailored to the current image.

This strategy effectively mitigates local overexposure and detail loss that may arise from global stretching, 
thereby improving the overall visual quality of the image.

Given that global contrast enhancement focuses on adjusting the overall brightness distribution, certain 
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localized details may remain under-enhanced. To compensate for this limitation, CLAHE is incorporated to 
enhance local contrast adaptively.

 (12)

where ICLAHE denotes the CLAHE-enhanced image, and CLAHE(ISR) represents the CLAHE transformation 
applied to the input image.

CLAHE improves local contrast by applying independent histogram equalization within small regions while 
restricting pixel values to mitigate over-enhancement artifacts, which are often observed in traditional histogram 
equalization. Given the complementary strengths and limitations of global and local contrast enhancement, a 
weighted fusion strategy is implemented to synthesize the final enhanced image:

 (13)

Where α is the fusion weight, and ISR corresponds to the image enhanced through Rayleigh distribution 
stretching.

This strategy ensures that the image retains global contrast improvements while simultaneously enhancing 
local details, producing a sharper and more naturally enhanced visual representation.

3. Experimental results and analysis
To assess the effectiveness of the proposed algorithm, comparative evaluations were performed from both 
subjective and objective perspectives in comparison with existing methods. The experiments were conducted on 
datasets collected from two representative underwater environments. The first dataset originates from the Jingyuan 
Shipwreck site in the Yellow Sea, where the seafloor is primarily composed of silty sand, a condition that promotes 
suspended particle formation, resulting in high turbidity and low visibility. The second dataset was collected 
from the Xisha underwater trench, where images predominantly suffer from severe color distortion. A total of 
246 images were processed, all standardized to a 1024 × 1024 pixel resolution. Performance evaluation was 
conducted using both qualitative and quantitative approaches. Qualitative assessment involved visual comparisons 
to subjectively evaluate image quality, whereas quantitative analysis utilized a comprehensive set of evaluation 
metrics to objectively assess the algorithm’s effectiveness.

Four existing underwater image enhancement methods were selected for comparison with the proposed 
approach: Retinex, UW-CycleGAN, UDCP, and UWCNN. These methods provide a comprehensive evaluation of 
the impact of different underwater image processing techniques on image quality.

To ensure objective assessment, three quantitative evaluation metrics were employed: Patch-Based Contrast 
Quality Index (PCQI), Underwater Color Image Quality Evaluation Metric (UCIQE), and Underwater Image 
Quality Measure (UIQM).

Five representative images were selected for visualization. The first dataset, as illustrated in Figure 2, was 
collected from the Jingyuan Shipwreck site.
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Figure 2. Images enhancement results of the proposed method compared to other methods

The turbidity of the underwater environment, combined with the presence of artificial light sources, causes 
significant light scattering, leading to a notable reduction in image details and contrast while also affecting color 
fidelity. Furthermore, overexposure artifacts are observed near the artificial light sources on both sides of the 
image. The UWCNN method leads to a complete loss of fine details. The Retinex method demonstrates limited 
effectiveness in underwater environments, with some images exhibiting noticeable sharpness degradation. The 
UDCP method results in the over-enhancement of colors in specific regions, while the UW-CycleGAN method 
suffers from excessive color amplification, causing color distortion. In contrast, the proposed method, specifically 
optimized for underwater conditions, effectively enhances text clarity, preserves image details and contrast, and 
improves color fidelity, while minimizing over-enhancement artifacts (Figure 3).

Figure 3. Images enhancement results of the proposed method compared to other methods
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In the Xisha underwater trench, the optical properties of light absorption and scattering result in significant color 
distortions, predominantly characterized by a strong cyan-green tint, which substantially degrades color fidelity and 
visual clarity. Various enhancement methods exhibit distinct advantages and limitations in addressing this issue. The 
UWCNN method applies excessive compensation to the red channel, leading to oversaturated red regions. The UDCP 
method overcorrects the green channel, causing the image to appear unnaturally greenish. The Retinex method over-
enhances dark regions, resulting in underexposure and loss of fine details. Similarly, the UW-CycleGAN method 
suffers from overcompensated red hues, distorting the overall color balance. By comparison, the proposed method 
demonstrates superior performance in color correction and image enhancement, effectively alleviating underwater 
color distortions, improving overall visual quality, and achieving a more natural and realistic restoration.

To quantitativelyw assess image quality, UIQM, UCIQE, and PCQI values were computed for the five 
selected images. The results are summarized in Table 1.

Table 1. Performance of evaluation metrics for different image processing methods

Images Methods UIQM UCIQE PCQI

1

Retinex 7.5709 24.2249 0.4744

UDCP 6.3653 33.6903 0.5135

UWCNN 1.6955 18.9805 0.3197

UW-CycleGAN 4.9672 32.6752 0.4904

Ours 7.4270 33.9983 0.6329

2

Retinex 7.3989 23.7096 0.5133

UDCP 4.3207 21.5981 0.4306

UWCNN 1.7468 17.1665 0.3547

UW-CycleGAN 4.8150 21.5271 0.5017

Ours 7.4704 24.4932 0.6250

3

Retinex 7.6713 26.0896 0.4855

UDCP 3.2267 32.9838 0.5318

UWCNN 6.4588 15.8973 0.4200

UW-CycleGAN 7.0313 31.6088 0.7346

Ours 7.7864 33.0733 0.7470

4

Retinex 7.5230 25.0243 0.5369

UDCP 4.0981 24.9454 0.617

UWCNN 5.2463 15.2347 0.4844

UW-CycleGAN 7.7680 25.7651 0.7790

Ours 7.8279 25.0277 0.7857

5

Retinex 4.8094 26.9719 0.5062

UDCP 3.9349 25.3797 0.5339

UWCNN 5.3996 16.5229 0.4460

UW-CycleGAN 8.3393 30.7937 0.7238

Ours 8.7182 30.4943 0.7119
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The experimental results reveal significant differences in evaluation metrics among the tested image processing 
methods. Notably, the proposed method consistently outperforms others across all metrics. In particular, for the first 
test image, the Retinex method achieves a relatively high UIQM score, indicating its effectiveness in enhancing 
image details and overall visual quality. However, its lower performance in UCIQE and PCQI suggests limitations 
in color restoration and contrast optimization, highlighting areas for further improvement. Meanwhile, the UW-
CycleGAN method exhibits distinctive performance trends in the fourth and fifth test images. It attains higher scores 
in UCIQE and PCQI, demonstrating strong capabilities in color enhancement and perceptual contrast improvement. 
Nevertheless, its relatively low UIQM scores expose deficiencies in overall image quality enhancement and detail 
preservation, indicating challenges in achieving a well-balanced and comprehensive enhancement.

4. Conclusion and future directions
This study presents LACC-RCE, a novel underwater image enhancement framework that combines LACC 
with adaptive Rayleigh distribution stretching and CLAHE-based contrast enhancement. Experimental results 
indicate that the method exhibits strong adaptability in color correction, contrast enhancement, and detail 
preservation, leading to a notable improvement in the visual quality of underwater images. Additionally, in terms 
of quantitative evaluation metrics, the proposed approach demonstrates consistent and superior performance 
across diverse underwater environments. Nevertheless, under extreme conditions, such as high turbidity or low-
light environments, the proposed method may still exhibit insufficient enhancement in certain local regions or 
color shifts, suggesting that its performance in highly complex underwater scenarios requires further improvement. 
Future research can focus on the following directions, Refining color correction and contrast enhancement 
strategies to improve the method’s adaptability and robustness in varying underwater conditions. Incorporating 
deep learning approaches to explore data-driven enhancement techniques, thereby improving the model’s 
generalization capability across different underwater environments.
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