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Abstract: Three-dimensional (3D) object detection is crucial for applications such as robotic control and autonomous 
driving. While high-precision sensors like LiDAR are expensive, RGB-D sensors (e.g., Kinect) offer a cost-effective 
alternative, especially for indoor environments. However, RGB-D sensors still face limitations in accuracy and depth 
perception. This paper proposes an enhanced method that integrates attention-driven YOLOv9 with xLSTM into the 
F-ConvNet framework. By improving the precision of 2D bounding boxes generated for 3D object detection, this method
addresses issues in indoor environments with complex structures and occlusions. The proposed approach enhances
detection accuracy and robustness by combining RGB images and depth data, offering improved indoor 3D object
detection performance.
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1. Introduction
Currently, 3D object detection algorithms are widely applied in environmental perception systems, particularly 
in fields such as robotic control, intelligent surveillance, and autonomous driving. Recent 3D object detection 
algorithms typically rely on 3D sensors to capture spatial data [1-3]. Although traditional high-precision LiDAR 
and high-precision camera devices provide relatively accurate spatial information, their high costs and complex 
deployment requirements make them unsuitable for consumer-grade devices. In contrast, RGB-D sensors, 
exemplified by Kinect, have become an ideal choice for the consumer market due to their low cost and ease of 
deployment, making them well-suited to meet the demands of indoor environmental perception.

However, despite the significant cost advantage of RGB-D sensors over LiDAR, they still exhibit certain 
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limitations in accuracy, especially in terms of precision and depth perception in complex indoor environments. 
Nonetheless, RGB-D sensors provide real-time RGB images and corresponding 3D depth information, making 
it possible to optimize 3D object detection algorithms using RGB images. In indoor object detection tasks, RGB 
images not only provide rich texture and color information but also help enhance detection robustness, particularly 
in low-light or occluded environments. Therefore, the integration of RGB images with 3D depth data holds 
significant research value and practical importance, particularly for the application of consumer-grade RGB-D 
sensors in indoor 3D object detection.

The F-ConvNet algorithm offers a promising approach by using 2D bounding boxes (2D BBoxes) generated 
by a 2D detector to slice the 3D space, thereby assisting in 3D object detection [4]. However, algorithms, such as 
F-ConvNet that rely on 2D detectors to generate 2D bounding boxes, have some shortcomings. Specifically, the 
generated 2D bounding boxes lack specificity and fail to fully account for the complexity and occlusions inherent 
in indoor environments. As a result, these methods struggle to precisely identify and localize indoor objects, 
particularly in narrow and complex spaces.

To address this issue, we propose an enhanced method that integrates the attention-driven YOLOv9 algorithm 
with xLSTM, incorporating it into F-ConvNet as the 2D detection module [5,6]. By introducing the attention 
mechanism of xLSTM, we can more accurately focus on and capture features relevant to 3D objects during the 
generation of 2D bounding boxes, especially in indoor environments. The temporal characteristics and long-short 
term memory capabilities of xLSTM enable it to better handle the dynamic changes and complex structures of 
indoor objects, thereby generating more precise and targeted 2D bounding boxes. This improvement significantly 
enhances the performance of F-ConvNet in indoor object detection, allowing the 3D object detection algorithm to 
more effectively combine RGB images and depth information, achieving higher detection accuracy and robustness.

In this paper, our main contributions can be summarized as follows:
(1) We integrate xLSTM into YOLOv9 to enhance its focus on indoor object detection, enabling it to generate 

more precise 2D bounding boxes (2D BBoxes). This improvement allows for better identification and 
localization of objects in indoor environments.

(2) We incorporate the xLSTM-enhanced YOLOv9 into the F-ConvNet framework, improving the accuracy 
of the 2D bounding boxes used for 3D object detection. This integration helps to better handle the 
complexities of indoor environments, providing more accurate and reliable detection results.

2. The proposed method
2.1. Vision-LSTM (ViL) + YOLOv9
Vision-LSTM (ViL) is a visual general-purpose network backbone constructed using xLSTM with residual blocks, 
as shown in Figure 1 [6]. The process is as follows: First, the input image is split into several patches, and then these 
patches are linearly projected. Each patch is augmented with a learnable positional information vector. Next, these 
patches are processed by alternating mLSTM blocks. For even-numbered blocks, the sequence is first flipped and 
then processed by the mLSTM layer. The processed sequence is normalized and finally passed through a linear 
projection for classification. The ViL encoder processes this sequence of patches, averaging the outputs of the first 
and last patch, and then the final classification result is output through a linear classification head.
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Figure 1. Vision-LSTM (ViL) architecture diagram

Vision-LSTM (ViL) utilizes mLSTM blocks to process image patches in a manner similar to time-series 
processing, introducing the concept of sequence processing into image tasks, akin to handling time-series data. 
We integrate Vision-LSTM (ViL) into YOLOv9 by introducing the EfficientLSTM module to enhance the 
temporal processing capability of image features. The ViLBlock and SequenceTraversal modules contained in 
EfficientLSTM are responsible for performing temporal processing of image features through mLSTM (multi-layer 
long short-term memory) networks. Specifically, the core component of ViL-mLSTM blocks is embedded into the 
feature extraction part of YOLOv9, helping the network capture dynamic changes and spatial relationships within 
the image.

2.2. xLSTM_YOLOv9 + F-ConvNet
In the process of integrating xLSTM_YOLOv9 into F-ConvNet, we begin by separating the RGB-D data into RGB 
and Depth components. The RGB data is then passed through xLSTM_YOLOv9, where the 2D detector generates 
2D bounding boxes (2DBBoxes). These 2DBBoxes are subsequently mapped into the frustum generation structure 
of F-ConvNet to assist in the creation of the frustum. The entire workflow is illustrated in Figure 2. 

Figure 2. Integrating xLSTM_YOLOv9 into F-ConvNet

This approach leverages the strengths of both 2D and 3D detection, enabling more accurate object 
localization. By utilizing the RGB data for 2D bounding box generation through xLSTM_YOLOv9, we can 
refine the frustum generation process, ensuring it focuses on the most relevant areas of the scene. This integration 
not only improves detection accuracy in complex environments but also enhances the robustness of the system 
by efficiently combining the spatial and depth information. As a result, this method optimizes the handling of 
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occlusions and varying object scales, making it especially effective in real-world 3D object detection tasks.

3. The proposed method
We integrated the xLSTM structure into YOLOv9 to enhance the performance of indoor object detection 
algorithms. To validate our proposed approach, we utilized the SUN RGB-D dataset. In this dataset, we selected 
5050 scenes for validation and 5285 scenes for training. For the 2D experiments, we used the 2D data provided by 
the SUN RGB-D dataset [7]. The experimental results are presented in Table 1.

From Table 1, it is evident that after incorporating the xLSTM structure, the performance of the YOLOv9 
algorithm in indoor object detection has been significantly improved, especially when dealing with objects that 
are prone to occlusion. The introduction of xLSTM allows the model to better capture temporal information, 
thereby enhancing its ability to recognize objects in dynamic scenes and complex environments. Compared 
to the traditional YOLOv9, the model with xLSTM exhibits stronger robustness in occluded object detection, 
small object recognition, and background noise suppression. This improvement is particularly crucial for real-
world applications of object detection in indoor environments, where in complex scenarios with multiple objects 
interwoven, the xLSTM structure can effectively alleviate the recognition difficulties posed by occlusions and 
challenging backgrounds.

Table 1. Shortcut keys for the template

Method bed table sofa chair toilet desk dresser night stand bookshelf bathtub mAP0.25

YOLOv9 0.81 0.46 0.61 0.71 0.86 0.33 0.48 0.69 0.54 0.60 0.61

xLSTM YOLOv9 0.85 0.55 0.69 0.76 0.87 0.35 0.49 0.69 0.54 0.52 0.64

In Table 2, we compare several typical RGB-D-based algorithms and also compare them with the F-ConvNet 
baseline algorithm, validating the effectiveness of our proposed approach. The evaluation metric used in Table 2 is 
mAP@0.25 proposed by Song et al. [7]. 

Next, we integrated xLSTM_YOLOv9 into F-ConvNet, and the results are shown in Figure 3. In Figure 
3, the first row displays the 2D RGB images from the SUN RGB-D dataset, the second row shows the detection 
results of the RGB scene using xLSTM_YOLOv9, and the third row presents the F-ConvNet detection results in 
the 3D point cloud scene, generated using the detection results from xLSTM_YOLOv9 and the frustum.

Table 2. Comparison of methods on different object categories

Method bathtub bed bookshelf chair desk dresser night stand soft table toilet mean

DSS [8] 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1

COG [9] 58.26 63.67 31.80 62.17 45.19 15.47 27.36 51.02 51.29 70.07 47.63

2Ddriven3D [10] 43.45 64.48 31.40 48.27 27.93 25.92 41.92 50.39 37.02 80.40 45.12

PointFusion [11] 37.26 68.57 37.69 55.09 17.16 23.95 32.33 53.83 31.03 83.80 45.38

Ren et al.[12] 76.2 73.2 32.9 60.5 34.5 13.5 30.4 60.4 55.4 73.7 51.0

F-PointNet [13] 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0

F-ConvNet [4] 61.32 83.19 36.46 64.4 29.67 35.1 58.42 66.61 53.34 86.99 57.55

Ours 63.95 84.69 32.74 77.84 24.63 34.0 61.4 66.32 50.65 88.59 58.32
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Figure 3. The detection result diagram of the F-ConvNet algorithm after integrating xLSTM_YOLOv9
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