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Abstract: Medical image segmentation has become a cornerstone for many healthcare applications, allowing for the 
automated extraction of critical information from images such as Computed Tomography (CT) scans, Magnetic Resonance 
Imaging (MRIs), and X-rays. The introduction of U-Net in 2015 has significantly advanced segmentation capabilities, 
especially for small datasets commonly found in medical imaging. Since then, various modifications to the original U-Net 
architecture have been proposed to enhance segmentation accuracy and tackle challenges like class imbalance, data 
scarcity, and multi-modal image processing. This paper provides a detailed review and comparison of several U-Net-based 
architectures, focusing on their effectiveness in medical image segmentation tasks. We evaluate performance metrics such 
as Dice Similarity Coefficient (DSC) and Intersection over Union (IoU) across different U-Net variants including HmsU-
Net, CrossU-Net, mResU-Net, and others. Our results indicate that architectural enhancements such as transformers, 
attention mechanisms, and residual connections improve segmentation performance across diverse medical imaging 
applications, including tumor detection, organ segmentation, and lesion identification. The study also identifies current 
challenges in the field, including data variability, limited dataset sizes, and issues with class imbalance. Based on these 
findings, the paper suggests potential future directions for improving the robustness and clinical applicability of U-Net-based 
models in medical image segmentation.
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1. Introduction
Medical image segmentation plays a crucial role in enabling automated diagnosis and treatment planning in the 
healthcare industry [1]. With the advent of deep learning, especially convolutional neural networks (CNNs), the 
segmentation process has become more efficient and accurate [2]. One of the key architectures that has been widely 
adopted in medical imaging is U-Net, introduced by Ronneberger et al. in 2015 [3]. U-Net revolutionized the field 
with its encoder-decoder architecture, where skip connections link the encoder and decoder layers, facilitating 
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precise segmentation with fewer annotated samples [4].
Despite the success of the original U-Net, several challenges remain, such as class imbalance, the need for 

multi-modal data processing, and the integration of global and local image features [5]. To address these issues, 
researchers have proposed several enhanced versions of U-Net. These variants include HmsU-Net, which 
integrates transformers for better feature extraction, CrossU-Net, which uses a cross-attention mechanism to handle 
multi-modal data, and mResU-Net, which incorporates residual connections for improved feature propagation.

The primary aim of this paper is to systematically review these U-Net variants, assess their performance 
across different medical image segmentation tasks, and provide a comparative analysis of their strengths and 
weaknesses [6]. The study also highlights potential areas for further improvement in U-Net-based architectures to 
enhance clinical applicability.

2. Related work
Over the last few years, significant progress has been made in the field of medical image segmentation, particularly 
with the development of U-Net-based models. These architectures have been adopted for various applications, 
including brain tumor segmentation, liver segmentation, and even lesion detection in gastric cancer [7].

2.1. U-Net architecture
The original U-Net architecture consists of two main parts: the contracting path (encoder) and the expansive path 
(decoder) [8]. The contracting path follows the typical architecture of a convolutional network, with each step 
progressively reducing the spatial dimensions of the feature maps. The expansive path then increases the spatial 
dimensions, aiming to generate pixel-wise predictions for segmentation. Crucially, skip connections between 
the encoder and decoder layers help retain fine-grained spatial information, allowing U-Net to achieve high 
segmentation accuracy, even with relatively small datasets [9].

2.2. U-Net variants and enhancements
Numerous improvements to the original U-Net architecture have been proposed to address specific challenges in 
medical image segmentation.

(1) HmsU-Net: This variant incorporates transformers alongside convolutional layers to capture both local 
and global features. The inclusion of a hybrid CNN-transformer model enhances the model’s ability to 
focus on both fine details and broader patterns in images. This approach has been shown to improve 
segmentation accuracy in brain tumor and liver segmentation tasks [10].

(2) CrossU-Net: CrossU-Net introduces a cross-attention mechanism, making it particularly effective for 
multi-modal segmentation tasks, such as the identification of gastric cancer lesions. By leveraging 
information from different image modalities, CrossU-Net can more accurately segment structures in 
complex multi-modal datasets [11].

(3) mResU-Net: The mResU-Net model adds residual connections and channel attention mechanisms, 
improving the flow of information through the network and ensuring that relevant features are prioritized 
during segmentation. These modifications have led to significant improvements in segmentation accuracy, 
particularly in the segmentation of brain tumors and other small lesions [12].
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2.3. Performance metrics
The key metric used for evaluating the performance of medical image segmentation models is the DSC, which 
measures the overlap between the predicted segmentation and the ground truth. Another important metric is IoU, 
which quantifies the overlap between predicted and true regions. Both metrics provide insight into the model’s 
ability to accurately delineate regions of interest [13].

3. Methodology 
3.1. Systematic review approach
This study follows a systematic review methodology to assess and compare the performance of U-Net and its 
variants in medical image segmentation tasks. We performed a comprehensive literature search across databases 
such as PubMed, IEEE Xplore, and Scopus using keywords such as “U-Net,” “medical image segmentation,” and 
“deep learning.” The search was limited to studies published from 2015 to 2024, ensuring that we captured the 
most recent advancements [14].

3.2. Inclusion and exclusion criteria
(1) Inclusion: Studies that evaluate U-Net and its variants in medical image segmentation tasks, published in 

English, and provide quantitative performance metrics (e.g., DSC, IoU). 
(2) Exclusion: Studies that lack original research, non-English publications, and editorials.

3.3. Performance metrics
We evaluate the performance of each model variant using the following metrics.
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Where A represents the predicted segmentation. B represents the ground truth segmentation.
The DSC measures the overlap between the predicted and actual segmentations, with values closer to 1 

indicating better segmentation accuracy.
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IoU evaluates the ratio of the intersection to the union of the predicted and ground truth regions, making it 
effective for assessing overlap precision.

4. Results and discussion 
4.1. Performance of U-Net variants
We compiled the performance results of various U-Net variants across different medical image segmentation tasks. 
The results are summarized in Table 1, which shows the Dice Similarity (DSC) for each variant across several 
segmentation tasks, including brain tumor, liver, pancreas, gastric lesions, and tympanic membrane segmentation.
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Table 1 Performance of U-Net variants

Model variant Brain tumor Liver Pancreas Gastric lesions Tympanic membrane Left ventricle

U-Net (Original) 0.85–0.90 0.88 0.91 0.90 0.88 0.92

HmsU-Net 0.92–0.95 0.91 0.92 0.96 0.91 0.95

CrossU-Net 0.91–0.96 0.91 0.91 0.96 0.92 0.93

mResU-Net 0.92–0.93 0.92 0.92 0.91 0.90 0.94

3D U-Net 0.86–0.88 0.87 0.88 0.88 0.85 0.89

EAR-U-Net 0.92 0.91 0.90 0.92 0.93 0.92

MFP-Unet 0.95 0.93 0.94 0.95 0.94 0.95

4.2. Discussion of results
From Table 1, it is clear that HmsU-Net and CrossU-Net performed exceptionally well in multi-modal and 
complex tasks like brain tumor and gastric lesion segmentation, with DSC values reaching up to 0.96. mResU-
Net, with its residual connections, provided solid performance across multiple tasks, particularly in brain tumor 
segmentation, where the model was able to achieve a DSC value of 0.93. The following formulas help with 
measurements.
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4.3. Performance of CrossU-Net across medical imaging applications
The CrossU-Net architecture, which integrates a cross-attention mechanism for better multi-modal learning, was 
evaluated across several medical imaging applications. This variant showed significant improvements in tasks 
such as precancerous lesion detection in gastric cancer and brain tumor segmentation.
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(a) (b)
Figure 1. (a) CrossU-Net performance across applications, (b) CrossU-Net performance across 

medical imaging applications

Figure 2 visually represents the performance of CrossU-Net across different medical imaging 
tasks, highlighting its strength in dealing with multi-modal data. The model demonstrated superior results in 
gastric lesion segmentation with a DSC of 0.96, outperforming other U-Net variants. CrossU-Net also 
exhibited high performance in brain tumor and pancreatic tumor segmentation, with DSC values of 0.91–
0.94. The details of Figure 2 are as follows.

(1) X-Axis: Various medical imaging applications (e.g., Gastric Lesions, Brain Tumor, Pancreas Tumor, etc.)
(2) Y-Axis: DSC value
(3) Bars: Show the DSC values for CrossU-Net in each application
The CrossU-Net architecture excels in segmentation tasks where the combination of features from multiple

modalities is critical. The cross-attention mechanism allows the network to focus on relevant features from each 
modality, thereby increasing the model’s robustness in these applications.

Figure 2. Performance bar chart
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4.4. Discussion of CrossU-Net performance
From Figure 1, we can observe that CrossU-Net consistently outperforms other U-Net variants in multi-modal 
applications. The architecture’s ability to handle complex data types—such as combining CT and MRI images for 
brain tumor segmentation—has been a key strength. This cross-attention mechanism enables the model to identify 
key features in one modality while aligning them with complementary features from another modality, enhancing 
overall segmentation performance.

Additionally, CrossU-Net achieved the highest performance in gastric cancer lesions, with a DSC of 0.96, 
which is a significant improvement over standard U-Net models. This demonstrates the potential of CrossU-Net in 
handling clinical applications where accurate lesion detection is paramount.

5. Conclusion and future directions 
5.1. Conclusion
This study systematically reviews the performance of various U-Net-based models in medical image segmentation 
tasks. Our results indicate that architectural modifications such as attention mechanisms, residual connections, 
and transformer integration offer substantial improvements in segmentation accuracy. HmsU-Net and CrossU-Net 
were found to be particularly effective for complex and multi-modal segmentation tasks.

5.2. Future directions
While U-Net-based models have made significant strides, challenges remain in improving generalization, handling 
class imbalance, and enhancing the models’ ability to process multi-modal data effectively. Future research should 
explore hybrid models that combine U-Net with other advanced architectures such as Generative Adversarial 
Networks (GANs) or Graph Neural Networks (GNNs) for even more. 
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