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Abstract: This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi- 
agent systems with nonconvex constraints and arbitrarily switching topologies, where each agent has first-order or second- 
order dynamics. To solve this problem, a distributed algorithm is proposed based on a contraction operator. By employing 
the properties of the stochastic matrix, it is shown that all agents’ position states could converge to a common point and 
second-order agents’ velocity states could remain in corresponding nonconvex constraint sets and converge to zero as long 
as the joint communication topology has one directed spanning tree. Finally, the numerical simulation results are provided 
to verify the effectiveness of the proposed algorithms.
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1. Introduction
In the past decades, the consensus control problem of multiagent systems has always been a hot issue in systems 
and control communities. Many related researchers transferred their research directions to this field and many 
interesting works have been reported, such as the results in [1–7]. Most of the published works rarely concerned 
the constraints on the velocity states of agents and assumed that all agents work in an ideal setting. In reality, the 
velocities of agents cannot be too large and often remain in a particular range, for example, the dead zone of the 
velocity of physical vehicles [8]. Recently, the constrained consensus problem has received more and more attention 
and some distributed algorithms were designed to solve such problems. For example, based on the projection 
operator, some gradient and sub-gradient distributed algorithms were proposed for convex-constrained consensus 
problems [9,10]. Noticing that the constrained sets might be nonconvex in practical engineering, such as the velocity 
of the quadrotor, some scholars have begun to investigate the nonconvex constrained consensus problems. By 
introducing a contraction operator and the multiple model transformation method, a distributed algorithm was 
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proposed and it is proven that the nonconvex constrained consensus can be achieved provided the joint topology 
has a directed spanning tree [11]. Later, this result was extended to the nonconvex input-constrained consensus 
problem and distributed optimization problem over discrete time or continuous-time multi-agent networks [12–14].

Most of the existing works on nonconvex-constrained consensus problems assumed that all agents have  
the same dynamics, i.e., the dynamics of all agents are the same order integrators. In practical engineering, the 
dynamics of the agents might be different due to the restriction of the environment. This kind of multi-agent 
system is called heterogeneous multi-agent systems. The consensus problems of heterogeneous multi-agent 
systems without any constraints have been extensively studied [15]. However, few works have been concerned 
with the nonconvex-constrained consensus problem of heterogeneous multi-agent systems. In, the mean-square 
nonconvex constrained consensus problem was solved for heterogeneous multi-agent systems with Markovian 
switching topologies, but through calculating its mathematical expectation, the average topology at any moment 
essentially has a directed spanning tree. Hence, the nonconvex-constrained consensus problem remains an 
unsolved issue when the communication topology arbitrarily switches.

This paper performs further research on nonconvex velocity-constrained consensus problem for 
heterogeneous multi-agent system with arbitrary switching topologies. A distributed algorithm is first designed 
by introducing a contraction operator. Then, the closed-loop system is changed into an equivalent one by a 
model transformation and it is proven that the nonconvex velocity-constrained consensus can be achieved as 
long as the joint topology has a directed spanning tree. In contrast, the Markovian topologies are considered and 
average communication topology has a directed spanning tree in essence, this paper considers the case that the 
communication topology switches arbitrarily which is more general, and the convergence analysis methods of 
this paper are totally different from due to different switching mechanism. Notations: In this paper, Rr represents 
Euclidean space with dimensionr. ǁxǁ represents the Euclidean normal of a vector x. For matrix A, AT represents its 
transpose. Ir represents identicalmatrix with dimension r. ⊗ represents kronecker product. 1 represent a vector with 
all of its entries being one.

2. Preliminaries
Let  be a directed graph, where  is the set of nodes and  is the set of edges. aij > 0 if and 
only if (j,i)  ε . Let Ni = {j  V:(j,i)  ε} be the neighbor set of node i. The Laplacian L is defined as [L]ii = ∑n

j=1 aij 
and [L]ji = –aij for all i ≠ j. The union of some graphs is a new graph whose node set and edge set are the unions of 
the node sets and edge sets of the corresponding graphs. A series of edges (vik–1,vik)(vik–2,vik–1)…,(vi1,vi2) is called a 
directed path from node vik to node vi1. A directed graph is said to have a directed spanning tree if there is one node, 
which is called as root, such that there is a directed path from the root to any other node.

Lemma 1: Let A be a stochastic matrix and (A) be its corresponding graph, i.e., A is the adjacent matrix of (A). 
Then (A) has a spanning tree if and only if the algebraic multiplicity of eigenvalue 1 of A is one.

3. Main results
Consider a discrete-time heterogeneous multi-agent system with  second-order agents and  first-order agents. 
Suppose the  th second-order agent has the following dynamics:

 (1)
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where xi ;vi ; ui∈Rr are the position state, velocity state and control input of the i th agent. Assume that the 
velocity vi(k) of the the i th second-order agent is constrained to stay in a nonempty and nonconvex set Vi Rr which 
is only accessed by the i th agent, Js = {1,...,m} . Suppose the i th first-order agent has the following dynamics:

 (2)

where xi  ; ui∈Rr are the position state and control input of the i th agent, Jf = {m+1,...,m+n}.
Assumption 1 [11]: Let , i∈Js be nonempty bounded closed sets, which satisfied that sup||SVi(x)||= ρi>0, 

 and 0∈Vi for all i∈{1,2,...,m}, where SVi(·) is a constraint operator with SVi(x)= 

 when x≠0 and SVi(0)=0 .

The aim of this paper is to design an algorithm for each agent based on local information to assure all agents 
reach an agreement on position state while the velocity of the second-order agent remains in its corresponding 
nonconvex constraint set. To complete this task, we propose the following algorithm:

   (3)

where pi(k)>0 is the time-varying gain, βi(k)=∑j∈Ni(k)aij(k)[xj(k)–xi(k)] T.

Denote ai(k)= , i=1,...m if vi(k)–pi(k)·vi(k)T+βi(k)≠0 , otherwise, ai(k)=1. It is clear that 

0 < a i( k ) ≤ 1 .  D e f i n e  b i( k )  =  .  I t  f o l l o w s  f r o m  t h e  d e f i n i t i o n  o f  a i( k )  t h a t 
 Let  We have:

 (4)

where ci(k) = T. Define , where xs(k)= [x1(k)T,...,xm(k)]T, 

ys(k)= [y1(k)T, ..., ym(k)]T, xf(k)= [xm+1(k)T, ..., xm+n(k)]T , E(k)= diag{a1(k), ..., am(k)} , , where 

,   ,  
, . Let Ls(k) and Lf(k) be the corresponding. Laplacian of 

the second-order and first-order agents networks. Thus, the Laplacian matrix of (k) has the following form:

 (5)

where Asf(k) and Afs(k) are the corresponding sub-matrix of L(k), Ni,f and Ni,s are the i th agent’s neighbor sets 
of first-order agents and second-order agents respectively,
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 (6)

 (7)

Let , and  be a diagonal matrix and 
the diagonal entries are the corresponding ones of L(k). Then the closed-loop system can be summarized as:

 (8)

where

 

(9)

Furthermore, let Ψ(k) = A(k) – E0(k) , then system (5) can be changed into:

  (10)

To continue, we need the following assumptions [11].
Assumption 2: There is a positive number μc>0 such that for any  when aif >0.

Assumption 3: For each i∈Js and k ≥ 0 ,  where di>0, and 
for each i∈Jf , [L(k)]ii <1 .

Assumption 4: Suppose the communication topology switches or not at any k and there exist a sequence 
{kl,l≥0} and a constant η>0 such that , and , and the joint graph of graphs 

 has at least one directed spanning tree.
Lemma 2: The matrix Ψ(k) is a stochastic matrix for any k ≥ 0.

Proof: From 0<ai ≤ 1 and  , it follows that  

and . Hence, , which leads to 1–  

, i.e., 1– ci(k) – 

, i∈Js. Since [L(k)]ii <1, i∈Jf  , we have that A3 – B(k)Ls(k) is a nonnegative matrix, which suggests that Ψ(k) is 
a nonnegative matrix. It follows from the definition of E0(k) that . Besides, It is easy to see that 

 and . Therefore, Ψ(k) is a stochastic matrix for all k ≥ 0.
Next, we will prove that αi(k) has strictly positive lower boundary.
Lemma 3: Under Assumptions 1 - 4. For all i∈Js, , where γ>0 is a constant.

Proof: It follows from (6) that , where 
. From Lemma 2, it is clear that  is a stochastic matrix. Hence, 

αi(k) is the convex combination of  for all , which suggests that 

.  H e n c e ,  
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 .  B e s i d e s ,  f o r  

 

. Noticing that , we get   

 From Assumption 1, we have:

 (11)

Lemma 4: Under Assumptions 1-4. There exist a positive number  and a positive constant 
 such that  for all ki>0 and i, where .

Proof: It follows from Lemma 2 that  is a stochastic matrix. Let  be the directed graph 
corresponding to , i.e.,  is the adjacent matrix of . It follows from the definition of  and  
tΨ(i) hat  for all  . 
From the expression of , it is easy to see that  0 and . In addition, the joint 
graph of graphs  has a directed spanning tree, so is the graph , whose root node 
located in {1,2,..., 2m+n} for any c > 0. Then by imitating the proof of [11, Lemma 2], the proof of this lemma can 
be completed.

Lemma 5: (1) For any  and s ≥ 0, there exists  such that 
, , where ;
(2) , where .
Proof: The proof of this Lemma is similar to the one of Lemma 3 in Ref. [11], so we omit it.
Theorem 1: Consider the discrete-time heterogeneous multi-agent system (1) and (2) with protocol (3). Under 

Assumptions 1–4, there exist a state  and two constants C>0 and 0<μ<1 such that for any 
 and for any  i.e., the position states 

of all agents reach an agreement exponentially and the velocity states of the second-order agents are constrained to 
stay in their corresponding nonconex constraint sets.

     
Figure 1. Topological structures between agents.
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Figure 2. The position states of all agents along abscissa axis.

P r o o f :  L e t  .  F o r  ,  w e  h a v e  

.  I t  f o l l o w s  f r o m  L e m m a  5 

t h a t  .  N o t i c i n g  

,  w e  h a v e  ,  a n d  ,  w h e r e  

 with C>0 and 0<μ<1.

4. Simulations
In this section, a numerical simulation is given to verify the correctness of the obtained result. Fig. 1 shows the 
communication graphs with 7 agents in R2, where agent 1 to 4 are second-order agents and agent 5 to 7 are first-
order agent. It is clear that each graph doesn’t have a directed spanning tree. Here, suppose the weight of each 

edge is 0.5 and the sample period T = 0.2. The nonconvex velocity constraint set  

. Let pi(0)=3 and pi(k+1)=bi(k) for all k>0. The initial values x1(0)=[3,0]T, x2(0)=[–

1,–2]T, x3(0)=[0,1]T, x4(0)=[–2,–1]T, x5(0)=[2,–3]T, x6(0)=[1,2]T, x7(0)=[–3,3]T and vi(0)=[0,0]T, i = 1,2,3,4. It is easy 
to verify that Assumptions 1-4 are satisfied. Fig. 2 and 3 show all agents’ position states. Fig. 4 shows second-
order agents’ velocity states in the phase plane. From these simulation results, we can see that the all agents reach 
an agreement on their position state while the velocity states are constrained to stay in the corresponding 
nonconvex sets.
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Figure 3. The position states of all agents along longitudinal axis.

Figure 4. The velocity states of second-order agents.

5. Conclusion
This paper investigated the non-convex velocity-constrained consensus problem of discrete-time heterogeneous 
multi-agent systems with arbitrarily switching topologies. A distributed constrained consensus protocols was 
designed to guarantee the position states of all agents converge to a common point while the velocity states of 
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second-order agents stay in some nonconvex constraint sets. Based on a model transformation, the consensus 
analysis was completed by applying the stochastic matrix theory. Finally, simulation was given to demonstrate the 
correctness of the proposed protocol.
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