
145

Journal of Electronic Research and Application, 2024, Volume 8, Issue 6
http://ojs.bbwpublisher.com/index.php/JERA

ISSN Online: 2208-3510
ISSN Print: 2208-3502

Analysis of Software Development and Operation 
Measures from the Perspective of Security 
Technology
Yan Gao*

Tencent Americas, Los Angeles 90066, California, United States

*Corresponding author: Yan Gao, gao.yan.gg1994@gmail.com

Copyright: © 2024 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: Security technology is crucial in software development and operation in the digital age. Secure software can 
protect user privacy and data security, prevent hacker attacks and data breaches, ensure legitimate business operations, 
and protect core assets. However, the development process often faces threats such as injection attacks, Cross-Site 
Scripting (XSS), and Cross-Site Request Forgery (CSRF), mainly due to code vulnerabilities, configuration errors, and 
risks from third-party components. To meet these challenges, this paper discusses the application of security technology in 
development and operation, emphasizing security requirements analysis, design principles, coding practices, and testing 
during the development phase. Along with focusing on environmental configuration, continuous monitoring, emergency 
response, disaster recovery, and regular auditing and updating during the operation phase. These measures can significantly 
enhance the security of software systems and protect user and corporate data.

Keywords: Security technology; Software development; Operation and maintenance

Online publication: December 2, 2024

1. Introduction
With the rapid development of information technology, software systems have become an important support for 
corporate operations and user services. However, as software systems are widely applied, the security threats 
they face are becoming increasingly severe. Security incidents such as hacker attacks and data breaches occur 
frequently, causing significant losses to users and enterprises. Therefore, how to effectively integrate security 
technology into the software development and operation process to ensure the security of software systems has 
become a focal point of industry attention. This paper aims to explore the application of security technology in 
software development and operation, providing strong support for building secure and stable software systems.



146 Volume 8; Issue 6

2. The importance of software development security
Secure software holds immense significance in the digital era. It not only effectively protects user privacy and 
data security, preventing hacking attacks and data breaches, but also ensures that user’s personal information 
and sensitive data are not illegally obtained or exploited, thereby gaining deep user trust. Following mandatory 
regulations such as the “Basic Requirements for Information System Security Protection Classification,” 
software security development is a technical benchmark and a prerequisite for legal and compliant business 
operations [1]. Furthermore, secure development is crucial for protecting corporate core data assets, the 
foundation for business survival and development. Once leaked or illegally used, these data can lead to 
significant economic losses and reputational damage. Therefore, through secure development, businesses can 
ensure the security and integrity of their core data assets. Ultimately, secure software significantly enhances 
the user experience, strengthening users’ trust in the software. This trust translates into the brand image and 
market competitiveness of the enterprise, giving it an advantageous position in the fiercely competitive market.

3. Major security threats faced by software development
3.1. Injection attacks: a threat that bypasses security controls
Injection attacks deceive applications into performing unauthorized actions by inputting malicious data. 
Structured query language (SQL) injection and command injection are typical methods of such attacks. They 
can bypass the security controls of applications, directly access or tamper with database data, and even execute 
system commands, posing a serious threat to system integrity and confidentiality [2].

Figure 1. The basic flow of injection attacks

3.2. Cross-Site Scripting (XSS): a covert and harmful attack
Cross-Site Scripting attacks exploit vulnerabilities in applications that fail to adequately filter and encode 



147 Volume 8; Issue 6

user inputs, injecting malicious script code into web pages. When other users browse these tampered pages, 
the malicious scripts execute, stealing sensitive user information, hijacking user sessions, or performing other 
malicious actions. XSS attacks are highly covert and harmful, making them difficult to detect and defend 
against promptly.

3.3. Cross-Site Request Forgery (CSRF): an attack exploiting user identity
Cross-Site Request Forgery is an attack method that exploits a user’s currently logged-in identity to send 
malicious requests to the server on their behalf. By constructing specially crafted web pages or links, attackers 
deceive users into clicking on them, thereby executing unauthorized actions such as transfers or password 
changes without the user’s knowledge. CSRF attacks directly threaten user data security and operational safety, 
causing significant losses to users [3].

3.4. Root cause analysis of security threats
The origins of these security threats are diverse but primarily include code vulnerabilities, incorrect security 
configurations, and insecure third-party components. Developers lacking security awareness or skills may 
result in undiscovered security vulnerabilities in the code. During the deployment and configuration of 
software systems, improper configurations or failure to follow best security practices can also lead to potential 
security risks. Furthermore, modern software development relies on a vast array of third-party components 
and libraries, which may themselves contain security vulnerabilities or have not undergone sufficient security 
testing. If developers do not conduct thorough security reviews, they may introduce potential security risks into 
their software systems.

4. Application of security technologies in software development
4.1. Security requirements analysis
Security requirements analysis is the first step in software development security, relying on in-depth user 
research. Through technical means such as questionnaires and in-depth interviews, developers can accurately 
capture users’ specific expectations for security, which are then directly translated into security requirements 
for software design [4]. For example, online questionnaires can be conducted using tools like SurveyMonkey to 
widely collect user opinions. At the same time, competitive analysis, utilizing tools such as Gartner’s Magic 
Quadrant and Open Worldwide Application Security Project (OWASP) Top Ten, systematically evaluates 
the security of similar products in the market, identifying competitors’ security strengths and weaknesses to 
provide insights for the security design of one’s software. Furthermore, developers need to thoroughly study 
software security standards and norms established by national and industry bodies, such as the International 
Organization for Standardization (ISO) 27001 and the Health Insurance Portability and Accountability Act 
(HIPAA), using these standards as benchmarks for security requirements identification to ensure that the 
software product meets relevant security requirements from the outset.

4.2. Security design principles
Security design principles occupy a central position in software development. The principle of least privilege, 
implemented through technologies such as Role-Based Access Control (RBAC), ensures that each user 
or system component is granted only the minimum permissions necessary to complete specific tasks. For 



148 Volume 8; Issue 6

example, in database management, Oracle’s permission management system can be used to allocate appropriate 
permissions based on user roles and needs, preventing permission abuse. Security isolation and layered design 
are achieved through technologies such as Docker containerization and microservices architecture, isolating 
system components or user data to prevent the spread of security issues. Layered design, such as the Model-
View-Controller (MVC) architecture, enhances system security by dividing different layers and strictly 
regulating interface communication. Data encryption and transmission security rely on strong encryption 
algorithms like Advanced Encryption Standard (AES) and Rivest-Shamir-Adleman (RSA), as well as 
transmission security protocols such as Hypertext Transfer Protocol Secure (HTTPS), Secure Sockets Layer 
(SSL)/Transport Layer Security (TLS), to ensure data security during storage and transmission [5].

4.3. Secure coding practices
Secure coding practices are crucial for building secure applications. Input validation and output encoding are 
implemented through techniques such as regular expressions and prepared statements, rigorously validating 
and filtering all user inputs to prevent malicious data injection. For example, using Java’s PreparedStatement 
class with parameterized queries avoids SQL injection. Output encoding, through techniques like HyperText 
Markup Language (HTML) escaping and Uniform Resource Locator (URL) encoding, prevents browsers 
from misinterpreting content as executable code, thereby avoiding XSS attacks. Developers should use coding 
libraries that have undergone rigorous security reviews, such as Apache Commons and OWASP’s Enterprise 
Security API (ESAPI), to reduce security errors. Secure Application Programming Interface (API) design and 
usage ensure the security of API interfaces through authentication technologies like Open Authorization (OAuth) 
and JSON Web Token (JWT), as well as RESTful API design follows the principles of Representational State 
Transfer (REST). Simultaneously, protocols such as HTTPS and TLS are utilized to safeguard the security 
of data transmission and storage, ensuring that only legitimate users can access APIs and limiting access to 
resources within the scope of user permissions [6].

4.4. Security testing
Security testing serves as the last line of defense in ensuring the security of software systems. Static code 
analysis, through tools like SonarQube and FindBugs, conducts in-depth inspections of source code or binary 
code to identify potential security vulnerabilities, providing developers with detailed vulnerability reports 
and remediation suggestions. Dynamic testing, on the other hand, uses tools like Burp Suite and OWASP Zed 
Attack Proxy (ZAP) to simulate attacks or trigger security issues through abnormal inputs. Fuzzing testing is 
a typical method within this category, utilizing tools like Peach Fuzzer and American Fuzzy Lop to perform 
fuzz testing on software and uncover potential vulnerabilities. Penetration testing simulates hacker attacks to 
assess the overall security of the system, employing tools like Metasploit and Nmap for vulnerability scanning 
and attack simulation to discover and remediate security vulnerabilities. Designing comprehensive and targeted 
security test cases is key to ensuring the effectiveness of testing, leveraging test management tools like TestRail 
and JUnit to cover all security boundary conditions with repeatability and verifiability. During execution, 
combining automation with manual testing, meticulously recording results, and using defect tracking systems 
like Jira and Bugzilla facilitates timely communication with developers, ensuring prompt issue resolution and 
jointly enhancing the security of the software system.



149 Volume 8; Issue 6

5. Application of security technologies in software operations and maintenance
5.1. Environment security configuration
Environment security configuration is the cornerstone for building a secure and stable Information Technology 
(IT) environment, encompassing meticulous server and database security configurations, secure network 
architecture design, and the formulation and implementation of security policies and firewall rules. At the 
server security configuration level, it is necessary to close unnecessary service ports, set passwords using 
strong encryption algorithms, and change them regularly. Additionally, automated tools should be utilized to 
promptly install system patches to guard against known vulnerabilities. In terms of database security, strict 
access control policies should be implemented, assigning user permissions based on the principle of least 
privilege. Regular data backups should be performed, with secure storage facilities such as tape libraries or 
cloud storage used to ensure the reliability of backup data. In the design of secure network architectures, 
Virtual Local Area Network (VLAN) technology is employed to logically segment the network, reducing the 
risk of risk propagation. SSL/TLS protocols are used to encrypt remote access traffic, ensuring secure data 
transmission. Firewall rules are finely configured according to security policies and business needs, utilizing 
firewall devices like Cisco and Checkpoint to achieve dynamic adjustment of Access Control Lists (ACLs), 
ensuring effective implementation of security policies.

Table 1. Environment security configuration details

Environment security 
configuration checklist Configuration item Configuration standard

Server security 
configuration

Disable unnecessary 
service ports

Only keep necessary service ports open to reduce the potential attack 
surface

Password settings Use strong encryption algorithms (e.g., SHA-256) for passwords, set 
complex passwords, and change them regularly

System patch management Use automation tools (e.g. Ansible, Puppet) to promptly install system 
patches and mitigate known vulnerabilities

Database security 
configuration

Access control policy Implement strict access control policies, allowing only authorized users to 
access

User privilege assignment Apply the principle of least privilege, assigning appropriate permissions 
based on user roles and needs

Data backup and storage Perform regular data backups and use secure storage facilities such as tape 
libraries or cloud storage to ensure the reliability of backup data

Network architecture 
security design

VLAN segmentation Use VLAN technology to logically segment the network, reducing the risk 
of risk propagation

Remote access encryption Encrypt remote access traffic using SSL/TLS protocols to ensure data 
transmission security

Firewall rule configuration
Fine-tune firewall rules based on security policies and business needs, using 
firewall devices like Cisco, Checkpoint, etc., to implement dynamic Access 
Control Lists (ACLs)

5.2. Continuous security monitoring
Continuous security monitoring serves as the defensive line for information system security, integrating 
log management and analysis, Intrusion Detection Systems (IDS)/Intrusion Protection Systems (IPS), and 
performance and security monitoring. In terms of log management, tools like Splunk and Elasticsearch, 



150 Volume 8; Issue 6

Kibana, Beats, and Logstash (ELK Stack) are employed for centralized storage, indexing, and searching of 
logs, with stringent access controls and encryption measures in place to ensure log integrity and confidentiality. 
For IDS/IPS, open-source or commercial systems such as Snort and Suricata are deployed to monitor network 
traffic and system activities in real-time, using technologies like signature matching and behavioral analysis to 
identify and block potential threats. Performance monitoring tools like Nagios and Zabbix are used to monitor 
key indicators such as response time, throughput, Central Processing Unit (CPU), and memory utilization 
in real-time, while security monitoring leverages technologies like vulnerability scanners and File Integrity 
Monitoring (FIM) to detect security vulnerabilities and abnormal behaviors, triggering alerts and initiating 
automatic or manual remediation measures upon detection.

5.3. Emergency response and disaster recovery
Emergency response and disaster recovery are crucial for ensuring business continuity, encompassing event 
reporting, analysis, handling, recovery, and subsequent improvement. Event reporting is automated through 
Security Information and Event Management (SIEM) systems, ensuring that all security events are promptly 
captured and reported. During event analysis, resources such as threat intelligence and vulnerability databases 
are utilized to thoroughly analyze the nature and scope of the event, employing technologies like Distributed 
Denial-of-Service (DDoS) protection and malware analysis to quickly locate and eliminate threats. In the 
recovery stage, techniques such as backup restoration and failover are used to ensure that systems and data 
are swiftly restored to normal status. The subsequent improvement stage involves regular reviews, revisions 
of security policies, and other measures to continuously optimize the emergency response process. In terms 
of data backup and recovery strategies, multiple backup solutions like tape backup and cloud backup are 
employed to ensure rapid data recovery in case of loss or damage. Failover and disaster recovery mechanisms 
are implemented through measures such as deploying redundant devices and establishing offsite disaster 
recovery centers, ensuring seamless business continuation to backup systems in the event of primary system 
failures, thereby minimizing losses.

5.4. Regular security audits and updates
Regular security audits and updates are a routine aspect of software system security, encompassing audits 
of security policies and compliance, software and dependency library updates, and security training and 
awareness enhancement. For security policy and compliance audits, automated audit tools like Nessus and 
OpenVAS are used to periodically review access control policies, password policies, data encryption policies, 
and more, ensuring compliance with regulations and standards such as HIPAA and General Data Protection 
Regulation (GDPR). In terms of software and dependency library updates, automated update tools like Ansible 
and Puppet are employed to ensure timely updates of operating systems, databases, applications, and third-
party libraries and frameworks, with sandbox testing, regression testing, and other measures conducted 
before updates to ensure stability. For security training and awareness enhancement, regular security lectures, 
seminars, and simulated attack exercises (like Capture The Flag (CTF) competitions) are held to enhance the 
operations team’s knowledge of the latest threats and defense skills, fostering a sense of security responsibility 
and sensitivity, and jointly maintaining the secure and stable operation of software systems.



151 Volume 8; Issue 6

6. Conclusion
In summary, security technologies play a pivotal role in software development and operations. By implementing 
security measures at various stages of development and operations, such as requirements analysis, design 
principles, coding practices, testing, environment configuration, continuous monitoring, emergency response, 
disaster recovery, and regular audits, the security of software systems can be significantly enhanced, protecting 
user and enterprise data. Facing constantly evolving security threats and technological advancements, we must 
keep up with new developments in security technologies, continuously optimizing and improving our security 
protection systems to address the severe challenges.

Disclosure statement
The author declares no conflict of interest. 

References
[1] Werder K, Li Y, Maedche A, et al., 2021, Software Development Process Ambidexterity and Project Performance: A 

Coordination Cost-Effectiveness View. IEEE Transactions on Software Engineering, 47(4): 836–849. 
[2] Liyan S, Leandro L, Minku A, 2023, Procedure to Continuously Evaluate Predictive Performance of Just-In-Time 

Software Defect Prediction Models During Software Development. IEEE Transactions on Software Engineering, 
49(2): 646–666. 

[3] Elvan K, Eric G, Arie VD, et al., 2022, Factors Affecting On-Time Delivery in Large-Scale Agile Software 
Development. IEEE Transactions on Software Engineering, 48(9): 3573–3592. 

[4] Bernsmed K, Cruzes DS, Jaatun MG, et al., 2022, Adopting Threat Modeling in Agile Software Development 
Projects. The Journal of Systems and Software, 2022: 183. 

[5] Patent Issued for Software Development Environment with Compilation and Read-Evaluate-Print-Loop Operations 
(USPTO 11256481), 2022: 5338–5342.

[6] Khan SU, Khan AW, Khan F, et al., 2022, Critical Success Factors of Component-Based Software Outsourcing 
Development From Vendors’ Perspective: A Systematic Literature Review. IEEE Access, 10: 1650–1658. 

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.




