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Abstract: Named Entity Recognition (NER) is crucial for extracting structured information from text. While traditional 
methods rely on rules, Conditional Random Fields (CRFs), or deep learning, the advent of large-scale Pre-trained Language 
Models (PLMs) offers new possibilities. PLMs excel at contextual learning, potentially simplifying many natural language 
processing tasks. However, their application to NER remains underexplored. This paper investigates leveraging the GPT-
3 PLM for NER without fine-tuning. We propose a novel scheme that utilizes carefully crafted templates and context 
examples selected based on semantic similarity. Our experimental results demonstrate the feasibility of this approach, 
suggesting a promising direction for harnessing PLMs in NER.
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1. Introduction
Named Entity Recognition (NER), also referred to as “moniker recognition,” is the task of identifying and 
classifying entities within text that hold specific meanings, such as names of people, locations, organizations, and 
other proper nouns. For instance, in the sentence “Guangxi and other places have more cloudy and rainy days,” 
“Guangxi” is a named entity that would be recognized as a location. The term NER was first introduced in the 
MUC-6 conference, and it has since garnered significant attention from both academia and industry due to its 
wide-ranging applications [1–3]. In search engines, accurate NER can enhance the precision of information retrieval, 
while in question-answering systems, it enables more accurate responses.

Named Entity Recognition (NER), the task of identifying and classifying key information units like names, 
organizations, and locations within text, has long been a cornerstone of natural language processing. Early NER 
systems relied heavily on handcrafted rules and dictionaries, often requiring extensive domain expertise and 
laborious maintenance to achieve reasonable performance. The advent of machine learning techniques offered a 
more adaptable solution, allowing models to learn patterns from annotated data and generalize to unseen examples.

However, it was the rise of deep learning that truly revolutionized the field. Neural network architectures, 
particularly Recurrent Neural Networks (RNNs) coupled with Conditional Random Fields (CRFs), demonstrated 
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the ability to capture complex contextual dependencies in text, leading to significant improvements in NER 
accuracy [4]. Subsequent advancements, such as the incorporation of Convolutional Neural Networks (CNNs) 
for local feature extraction and Long Short-Term Memory (LSTM) units for improved handling of long-range 
dependencies, further pushed the boundaries of what was possible [5,6]. The integration of attention mechanisms, 
enabling models to focus on the most relevant parts of the input sequence, proved especially impactful, allowing 
for even finer-grained entity recognition and classification [7].

The Generative Pre-trained Transformer (GPT) is a powerful natural language processing model that 
leverages a self-attention mechanism to capture relationships within input sequences [8]. Its extensive pre-training 
enables rich language representation and contextual understanding, facilitating in-context learning without 
parameter fine-tuning [9]. This capability allows GPT to perform diverse natural language processing tasks by 
utilizing prompts and context, drawing upon its pre-trained linguistic knowledge. Motivated by this, we investigate 
the application of GPT to Named Entity Recognition (NER) in this paper. We propose a novel approach that 
employs context examples selected based on a principle of utterance distance, and we empirically validate the 
feasibility of this method. In essence, this paper’s key findings can be encapsulated as follows:

(1) We investigate the feasibility of utilizing the pre-trained large language model GPT-3 for NER tasks, 
particularly focusing on scenarios where fine-tuning is not required. 

(2) We propose a novel NER scheme that leverages carefully designed templates and the selection of context 
examples based on semantic similarity, thereby eliminating the need for model fine-tuning. 

(3) We perform empirical evaluations to verify the effectiveness of our suggested approach, highlighting its 
promise for practical NER deployments.

2. Methodology
2.1. Utilizing GPT-3
GPT-3, a pre-trained large language model developed by OpenAI, is built upon the Transformer architecture, 
incorporating multi-layer self-attention mechanisms and feed-forward neural networks. Through extensive pre-
training on a diverse corpus, GPT-3 acquires a generalized language representation, enabling it to adapt to various 
natural language processing tasks. Notably, GPT-3 exhibits a degree of zero-shot learning capability, performing 
new tasks without task-specific training data through in-context learning. The availability of OpenAI’s Application 
Programming Interface (API) for GPT-3 further facilitates its use in downstream applications, making it the chosen 
base model for this research.

2.2. Sentence-BERT model

Figure 1. Model structure of Sentence-BERT
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The Bidirectional Encoder Representations from Transformers (BERT) model, has proven to be highly effective 
for tasks that involve assessing the semantic similarity between pairs of sentences, as exemplified by its exceptional 
performance on the Semantic Textual Similarity (STS) benchmark. However, BERT’s architecture necessitates 
the simultaneous processing of sentence pairs, incurring substantial computational costs. As an example, the 
computationally intensive process of finding the most semantically similar pair among 10,000 sentences requires 
roughly 50 million inference operations, translating to about 65 hours of processing time on a V100 GPU. This 
inherent computational burden renders BERT impractical for large-scale semantic similarity searches.

Sentence-BERT addresses BERT’s computational limitations by adopting a Siamese network architecture 
with shared BERT parameters. This facilitates the generation of semantically rich sentence embeddings via 
contrastive learning. The proximity of embeddings for semantically similar sentences enables efficient similarity 
search using metrics like cosine similarity. By drastically reducing the computational time compared to BERT (e.g., 
from 65 hours to 5 seconds for finding the most similar pair among 10,000 sentences), Sentence-BERT is well-
suited for tasks such as clustering and semantic-based information retrieval. Consequently, we leverage pre-trained 
Sentence-BERT in this study to derive sentence embeddings.

2.3. The proposed NER method
In this study, we adopt a strategy of selecting in-context examples based on their semantic similarity to the target 
sentence. The semantic similarity between sentences is quantified using the cosine similarity of their Sentence-
BERT embeddings. We select the “N” most semantically similar sentences from the training set as in-context 
examples, which are then incorporated into the template and provided as prompts to GPT-3.

It’s important to note that selecting the “N” most similar sentences may inadvertently exclude entity types 
present in the target sentence but absent in the chosen examples. To mitigate this, we remove one sentence from the 
candidate set and include a sentence that encompasses all entity types. This straightforward approach is feasible in 
our scenario due to the limited number of entity types (four) and the abundance of sentences containing all types in 
our dataset. However, more sophisticated strategies may be necessary for complex datasets with various entity types.

Furthermore, the choice of template significantly impacts the performance of our proposed scheme. The 
subsequent experimental section explores various template designs. Additionally, we conduct experiments to 
demonstrate the efficacy of selecting examples based on semantic similarity and to analyze the influence of the 
number of examples on the final results.

3. Experiments and results
3.1. Dataset
The CoNLL-2003 named entity dataset, derived from the Reuters Corpus and comprising news stories from 
August 1996 to August 1997, was utilized for the experiments. We focused solely on the English portion of the 
dataset, excluding the development set and unlabeled data. The dataset employs the BIO tagging scheme, marking 
the beginning (B) and inside (I) of entities, with “O” denoting non-entity tokens. The entity types within this 
dataset include four categories: person names (PER), locations (LOC), organizations (ORG), and miscellaneous 
entities (MISC).

The experiments utilized the OpenAI API for GPT-3, specifically the “davinci-instruct-beta-v3” engine with 
temperature set to 0 and top-p set to 0.9. A pre-trained Sentence-BERT model (“all-mpnet-base-v2”) was employed 
without fine-tuning, generating 768-dimensional embeddings. Cosine similarity between these embeddings served 
as the semantic similarity measure between sentences, with higher values indicating greater similarity.
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3.2. GPT-3 template selection
The selection of an appropriate template is crucial for the effective utilization of GPT-3 in the NER task. The initial 
and most intuitive approach is to directly employ the standard Begin, Inside, Outside (BIO) annotation method, as 
depicted in Figure 2. This method aims to directly prompt GPT-3 to produce the corresponding NER labels. The 
BIO scheme is a widely adopted labeling convention in entity extraction tasks. The “B” tag signifies the beginning 
of a named entity, with the first word of the entity being labeled as “B-” followed by the entity category. The “I” 
tag denotes words within the named entity, while “O” represents tokens that are not part of any named entity. 
To illustrate, in the sentence “Adam Bentley, who works at Microsoft, lives in Seattle,” the BIO labels would 
be “B-PER I-PER O O O O O B-ORG O O O B-LOC.” Our first template directly implements this standard 
annotation method, where the first line of the template contains the sentence to be processed, and the second line 
presents its corresponding BIO labels.

Figure 2. The “BIO-tag” template

While the BIO labeling method is a standard in entity extraction tasks, its direct application as a template 
for GPT-3 presents challenges. The abstract nature of the BIO labels makes it difficult for the language model to 
discern the relationship between these labels and the corresponding utterances, especially when provided with a 
limited number of in-context examples. This can lead to ambiguous or even erroneous outputs, including instances 
where the number of predicted labels misaligns with the number of tokens in the input sentence, as observed in 
Figure 2. The use of abbreviations in the labels (e.g., B-PER for Begin-Person) further complicates the matter, 
requiring the model to infer their meaning from the context. Non-fine-tuned language models, lacking extensive 
task-specific knowledge, struggle with such semantic reasoning, potentially resulting in suboptimal predictions. 
Consequently, a template that aligns more closely with natural language semantics is necessary to enhance GPT-
3’s performance on this task.

For our second proposed template, we employ a format that more closely resembles natural language 
expressions. Specifically, the first line of this template presents the sentence requiring entity extraction. The 
subsequent four lines explicitly list the four entity types targeted for extraction, along with their corresponding 
entity names identified within the sentence. This structure is illustrated in Figure 3.

In practical testing, this second template demonstrated significantly higher usability compared to the first 
template, successfully performing partial entity extraction. This indicates that, based on the provided context, the 
language model partially comprehends both the content and the objective of the entity extraction task. However, 
employing this template for entity extraction still resulted in certain errors. In some instances, the language model 
failed to recognize the need to extract all four entity types, leading to over-extraction or under-extraction of 
specific entity types. Moreover, certain entities were erroneously assigned to multiple entity types. As exemplified 
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in Figure 3, the person entity “Nadim Ladki” was simultaneously recognized as both a person and a location, 
highlighting an incorrect assignment of a single entity to two distinct types. This suggests that the template itself 
might introduce interference in the model’s reasoning process.

The primary cause of these issues lies in the complexity of the template. Its highly structured output 
necessitates the language model to learn the task definition from the context, reason about the task itself, and 
simultaneously understand the structure of the expected output. Accomplishing these three tasks concurrently 
proves challenging for the language model, particularly when provided with limited in-context examples. 
Consequently, this template can yield unstable results and incorrect outputs.

Figure 3. The “multi-line tag + entity” template

Building upon the second template, we propose a third template that further streamlines the process. In this 
refined template, each example consists of two lines: the first line presents the sentence for entity extraction, and 
the second line directly lists all the entities and their corresponding types, as demonstrated in Figure 4. The key 
advantage of this template lies in its simplified structure, requiring only a single line of output. This reduction 
in complexity alleviates the burden on the language model, eliminating the need for intricate reasoning about 
the output format. Consequently, the model can focus more directly on the core task of entity extraction, leading 
to improved consistency and accuracy. Moreover, as evidenced in Figure 4, this template exhibits superior 
performance in handling longer sentences, suggesting that the language model can more effectively infer the task 
objective from the context and accurately classify entity names when presented with a less convoluted structure.

The preliminary empirical analysis revealed that the third template consistently outperformed the other two 
in terms of accuracy. Consequently, the third template was adopted for subsequent metric computations and result 
summarization throughout the remainder of this investigation.
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Figure 4. The “entity + tag” template

3.3. Evaluating the role of in-context example selection in NER
The present study introduces a novel strategy for selecting in-context examples based on the principle of utterance 
similarity. To assess the efficacy of this approach, a comparative analysis was undertaken, contrasting it against 
a baseline method involving the random selection of in-context examples. The experimental setup for both 
methodologies incorporated the utilization of four in-context examples. Notably, within the randomly selected 
examples, a deliberate inclusion of at least one statement encompassing all entity types was ensured. This measure 
aimed to mitigate the potential issue of encountering entities in the target statement that were absent from the 
in-context examples. The comparative performance of these two strategies was evaluated using the first 100 
statements from the CoNLL-2003 training set, with the outcomes summarized in Table 1.

Table 1. Experiments on the strategy of choosing in-context examples

Selection strategy F1 F1 (case sensitive)

Randomized selection 0.548 0.580

In this paper, we propose 0.706 0.721

The effectiveness of entity extraction was evaluated using the F1 score, a balanced measure that combines 
precision and recall. True Positives (TP) indicate entities accurately identified by the model, False Positives (FP) 
signify entities incorrectly predicted, and False Negatives (FN) represent entities overlooked by the model. The F1 
score is calculated as the harmonic mean of precision (P) and recall (R), as shown below:

F1 = 2 × (P × R) / (P + R)
Where:
P = TP / (TP + FP)
R = TP / (TP + FN)

The F1 score, which balances precision and recall, provides a comprehensive view of the model’s 
effectiveness. A higher F1 score means the model strikes a good balance between avoiding false positives 
(identifying things that aren’t entities) and false negatives (missing actual entities), demonstrating its ability to 
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extract entities accurately.
The empirical results presented in Table 1 unequivocally demonstrate that the proposed in-context example 

selection methodology, grounded in semantic similarity, yields a substantial enhancement in the efficacy of Named 
Entity Recognition (NER), as evidenced by the markedly superior F1 scores. The underlying rationale for this 
improvement can be attributed to the inherent nature of the selection process. By prioritizing semantically similar 
examples, the model is furnished with context that is likely to exhibit structural and entity-type congruencies with 
the target utterance. This facilitates a more informed and accurate prediction process. In contrast, the random 
selection of examples lacks this inherent advantage, potentially leading to the presentation of contextually 
disparate information that may hinder the model’s ability to discern relevant entities.

3.4. The influence of varying in-context example numbers on NER efficacy
The influence of the quantity of in-context examples on the outcomes was also investigated. Experiments were 
conducted employing 2, 4, 8, and 16 in-context examples, each selected based on semantic proximity to the target 
statement within the training set. The evaluation was performed on the initial 100 statements of the test set, and the 
results are presented in Table 2.

Table 2. Experiments on the strategy of choosing in-context examples

Number of examples F1 F1 (case sensitive)

N = 2 0.652 0.656

N = 4 0.706 0.721

N = 8 0.813 0.818

N = 16 0.894 0.901

The results delineated in Table 2 underscore the positive correlation between the quantity of in-context 
examples and the efficacy of NER. When furnished with a mere two examples, the model’s performance, as 
measured by precision and recall, was notably suboptimal. Furthermore, the emergence of extraneous entity labels 
beyond the predefined set (e.g., “event”) suggests that an insufficient number of in-context examples may impede 
GPT-3’s ability to accurately delineate the task’s scope and boundaries. The model, in essence, struggles to grasp 
the precise nature of the expected output when provided with limited contextual cues.

The progressive increment in the number of in-context examples to four led to a substantial improvement in 
accuracy, albeit with the persistence of occasional redundant label assignments. Further augmentation of the in-
context examples to eight resulted in an additional enhancement of both accuracy and recall. The most pronounced 
improvement was observed with the inclusion of 16 in-context examples, where the F1 score approached an 
impressive 0.9. This empirical evidence strongly suggests that a larger pool of in-context examples facilitates 
a more refined and effective in-context learning process within GPT-3. However, it is crucial to acknowledge 
the trade-off between performance gains and computational overhead. The computational demands escalate 
exponentially with the increase in in-context examples. Consequently, a balanced approach was adopted, 
wherein N = 4 was selected as the optimal number of in-context examples for the proposed methodology. This 
configuration strikes a judicious equilibrium between computational efficiency and NER performance.

3.5. Comparative analysis with existing NER approaches
To establish a comparative benchmark against prevailing methodologies, a selection of prominent NER models 
was incorporated into the evaluation, encompassing Lattice LSTM + CRF, LR-CNN + CRF, LGN + CRF, 
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FLAT, and NFLAT [10–14]. The experimental setup was meticulously maintained across all models, ensuring 
uniformity in dataset partitioning and environmental conditions. The outcomes of this comparative assessment are 
comprehensively detailed in Table 3.

Table 3. Comparison with related NER methods

Methods F1 F1(case sensitive)

Lattice + LSTM + CRF 0.582 0.587

LR-CNN + CRF 0.589 0.592

LGN + CRF 0.596 0.601

FLAT 0.603 0.608

NFLAT 0.658 0.664

Proposed method 0.706 0.721

Note: Long Short-Term Memory (LTSM), Conditional Random Field (CRF), Logistic Regression (LR), Convolutional 
Neural Network (CNN), Local Graph Network (LGN), Flat-Lattice Transformer (FLAT), Nested Flat-Lattice Transformer 
(NFLAT)

The empirical evidence presented in Table 3 unequivocally establishes the superiority of the proposed 
methodology in comparison to both the FLAT and NFLAT models. Furthermore, it exhibits a performance 
advantage over the traditional Lattice, LR, and LGN methods. The observed outcomes underscore the efficacy 
of leveraging pre-trained large language models in conjunction with contextual samples to enhance the 
comprehension of semantic content within the context of Named Entity Recognition (NER). The inherent capacity 
of these models to capture intricate linguistic nuances and contextual dependencies contributes to their superior 
performance in discerning and classifying named entities within textual data.

4. Conclusion and outlook
The empirical investigations conducted in this study have unequivocally demonstrated the advantages of the 
proposed strategy for selecting in-context examples, highlighting its pivotal role in enhancing the efficacy of 
Named Entity Recognition (NER) within the GPT-3 framework. The findings further corroborate the notion that a 
more extensive repertoire of in-context examples serves to streamline and enhance the inferential process inherent 
to in-context learning. In summary, this research endeavor has successfully introduced and validated a schema for 
the selection of in-context examples, predicated upon semantic similarity, to populate templates for GPT-3-driven 
NER. The empirical evidence garnered through rigorous experimentation lends credence to the viability and 
effectiveness of this schema.

The current methodology, while effective, does exhibit a limitation in its capacity to pinpoint the precise 
location or span of identified entities within the utterance. This capability could prove instrumental in downstream 
NER applications, facilitating tasks such as information extraction and knowledge graph construction. Future 
research endeavors could explore the refinement of the existing template to enable GPT-3 to furnish entity 
positional information or the integration of supplementary techniques for entity localization. Such advancements 
would undoubtedly further amplify the utility and impact of this NER paradigm, solidifying its position as a 
valuable tool in the realm of natural language processing.
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