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Abstract: Welding voltage and current in arc signals are directly related to arc stability and welding quality. Process 
experiments with different parameters were organized according to the orthogonal experimental design method by 
constructing an aluminum alloy double-pulse metal inert gas (MIG) welding arc electric signal test platform. The data 
acquisition system of the aluminum alloy MIG welding process was established to obtain real-time arc signal information 
reflecting the welding process. The aluminum alloy’s collected double-pulse arc current signals are decomposed adaptively 
by broadband mode decomposition (BMD). The direct current (DC) signal, pulse signal, distortion signal, ripple signal, 
and noise signal are separated and extracted, and the composite multiscale fuzzy entropy (CMFE) is calculated for the 
component set of the electrical signal. The experimental results show that the current waveform obtained by the double-
pulse MIG welding current signal is consistent with the corresponding weld forming diagram. Simultaneously, the 
composite multiscale fuzzy entropy is calculated for the arc characteristic parameters. The rationality of matching process 
parameters and arc stability of aluminum alloy’s double-pulse MIG welding were evaluated.
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1. Introduction
Aluminum alloy is used in MIG welding despite the process being prone to oxidation, cracking, and bubble 
formation, as well as welding deformation and other defects. Additionally, the complexity of the welding equipment, 
the difficulty in adjusting process parameters, and the lack of quality control measures contribute to the challenges. 
Any slight deviation in production conditions during the welding process makes it difficult to ensure the consistent 
quality of the weld [1-3]. To ensure the forming quality of aluminum alloy MIG welding, it is necessary to monitor 
the quality information of the process and its influencing factors [4-6]. In mechanical engineering, the adaptive time-
frequency analysis method for signals has always been a hot research topic [7-9]. In recent years, adaptive time-
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frequency analysis has been widely used to extract effective features from complex non-stationary signals 
disturbed by noise. Common methods include empirical mode decomposition (EMD), ensemble empirical mode 
decomposition (EEMD), variational mode decomposition (VMD), and so on. Broadband mode decomposition 
(BMD) is a new adaptive time-frequency analysis method [10]. The BMD method begins by establishing a joint 
dictionary of wideband effective signals (such as square waves and sharp waves) along with local narrowband 
signals. An intelligent optimization algorithm is used to search for the sparsest solution of the signal within 
this constructed dictionary. BMD utilizes a regularization smoothness operator as its optimization objective 
function, targeting the parameters such as the amplitude, frequency, and phase of the wideband effective signals, 
as well as the filter parameters of the local narrowband signals. Through the use of intelligent optimization 
algorithms, BMD achieves sparse signal decomposition during the optimization process. Compared with the 
previous adaptive time-frequency analysis method, the BMD method can separate the “sharp angle” wideband 
effective signal and local narrowband signal from the complex non-stationary signal, and realize the feature 
extraction of the effective mode in the wide band range.

In this paper, the direct characteristic information of arc signal during aluminum alloy double-pulse 
MIG welding is analyzed through the electric arc signal test experiment. The collected arc current signal is 
decomposed by BMD, and the distortion components of the current waveform with different frequencies are 
obtained. On this basis, the composite multiscale fuzzy entropy calculation (CMFE) is carried out, which 
provides a new experimental method and reference for the stability analysis of arc signal and welding quality 
evaluation of the aluminum alloy double-pulse MIG welding process.

2. Test platform
To study the characteristics of electric arc signals during welding, the experimental platform for electric 
arc signal testing of aluminum alloy double-pulse MIG welding in the process can not only accurately and 
conveniently collect electric arc signals online, but also detect and analyze arc stability and weld forming 
quality. This paper introduces in detail the experimental setup for aluminum alloy MIG welding and arc electric 
signal testing, focusing on aluminum alloy double-pulse MIG welding as the experimental subject.

2.1. The overall composition of the experimental platform
The aluminum alloy double-pulse MIG welding experiment and arc electric signal test platform setup are 
shown in Figure 1. The test platform comprises a double-pulse metal inert gas (DPMIG-500) welding machine, 
welding robot, wire feeding mechanism, argon tank, and arc signal data acquisition system. The experiment 
involves using the DPMIG-500 welding machine and welding robot for a double-pulse MIG welding surfacing 
experiment. The workpiece material is 6061 aluminum alloy with dimensions of 250 mm × 200 mm × 5 mm. 
The welding parameters include an argon flow rate of 10 L/min, dry extension of welding wire 15 mm, welding 
wire model ER5356, and welding wire diameter of φ1.2mm. The specific functions of each component are 
shown in Table 1.

The aluminum alloy MIG welding arc electric signal data acquisition system includes current and voltage 
sensors, data acquisition cards, and computers for storing and analyzing data. Through the MIG welding system, 
the welding current and voltage, the welding speed and the start and stop functions of the welding machine 
can be set respectively. The welding current and voltage signals are sent to the collection box through the hall 
current sensor and the electrical isolation voltage sensor is arranged in the transmission box. After processing 
by the acquisition system, it is transmitted to the computer by ethernet interface for oscilloscope and storage. 
The sampling frequency is 12 kHz, sampling 25 s per welding process, 24,000 data points were intercepted for 
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BMD decomposition and frequency analysis.
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Figure 1. MIG welding experiment and test platform with (1) welding robot (2) wire feeder (3) arc signal data acquisition 
box (4) computer (5) welding machine (6) arc sensor box (7) argon gas storage tank 8) power supply

Table 1. Main components and functions of the experimental platform

Item Function

DPMIG-500 aluminum welding 
machine

Responsible for setting welding process parameters such as welding peak voltage, welding base 
value voltage, welding peak current, welding base value current, duty cycle, welding frequency, and 
starting and stopping welding experiments.

ABB IRB1410 Industrial Robot Control welding speed and other sizes and travel direction.

Data acquisition system Including a sensor box, acquisition box, computer, and communication cable. For high speed and 
accurate storage of welding arc data.

Wire feeder Includes wire feed tray and wire feed controller. Manual wire feeding and automatic wire feeding 
are available for choice.

Argon gas storage tank Inert gas argon is provided while the wire is transported. To isolate air outside the welding area and 
prevent oxidation.

2.2. Double-pulse MIG welding process experiment
At different welding process parameters, the welding current signal collected synchronously during the welding 
process is transmitted to the industrial computer for display and storage. The collected signals are analyzed and 
processed with the help of MATLAB software with specific data points extracted from the DP-MIG welding 
current signal for detailed analysis. The welding parameters are shown in Table 2.

Table 2. DP-MIG process parameters

Experimental 
sequence number

Welding 
speed (mm/s)

Spike current 
(A)

Base current 
(A)

Spike voltage 
(V)

Base voltage 
(V)

Duty ratio 
(%)

impulse 
frequency (Hz)

1 1 50 40 21 17.5 50 2

2 1.5 50 40 21 17.5 50 2

3 5 50 40 21 17.5 50 2

4 5 60 40 21 17.5 50 5

 
Four sets of different welding process parameters were selected for double-pulse MIG welding to analyze 

their respective effectiveness and welding process stability. The appearance of weld formations from each 
experimental group is depicted in Figure 2 respectively. Figure 3 shows the waveform diagram of the DP-MIG 
welding current signal.
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As shown in Figure 2, there is a biting phenomenon at the tail of the weld surface of experiment No. 1. 
The weld surface of experiment No. 3 has obvious welding defects such as lack of penetration, lack of fusion, 
and poor surface forming. Weld surfaces of experiments No. 2 and No. 4 formed well.

The appearance of weld No. 1 is shown in Figure 3(a). Initially, the weld exhibited a uniform fish scale 
pattern, indicating overall good formation. However, towards the end of the weld, there was some edging 
observed. The weld surface appeared angular, irregular, and slightly sunken. Analysis of the intercepted 2 s 
welding arc current signal revealed the following: In the low-frequency pulse phase, welding commenced with 
automatic wire feeding, forming an arc that joined the molten pool. The arc’s impact caused the coarse crystals 
in the molten pool to break up, achieving grain refinement. As the welding frequency in the low-frequency pulse 
group increased, further stirring occurred inside the molten pool, refining the weld grain. The corresponding 
welding arc current signal is sparse. In the high-frequency pulse group phase, the welding wire melted, and 
droplets formed and transitioned into the molten pool. The corresponding welding arc signal showed periodic 
transformation.

The appearance of weld No. 2 is presented in Figure 3(b). The whole weld showed a uniform and regular 
fish scale pattern, but the spacing between the fish scale pattern is larger than that of weld No. 1. Analysis of 
the intercepted 2 s welding arc current signal revealed that in the low-frequency pulse phase, welding slowly 
started to arc with automatic wire feeding where the arc joins the molten pool. The impact of the arc caused 
the coarse crystals in the molten pool to break up to achieve the effect of grain refinement. The increase of 
welding frequency in the low-frequency pulse phase further stirred the inside of the weld pool, refining the 
weld grain and the corresponding welding arc current signal showed sparse phenomenon. In the high-frequency 
pulse phase, the welding wire melted and droplets slowly formed and transitioned into the molten pool. The 
corresponding welding arc signal presents a periodic change, but the stirring time is too long in the initial 
formation of the molten pool, so the distance between the figure of the fish scale pattern is large.

The appearance of weld No. 3 is shown in Figure 3(c). There are obvious welding defects such as lack of 
penetration, lack of fusion, and poor surface forming on the surface of the whole weld. Analysis of the intercepted 
2 s welding arc current signal presented that in the low-frequency pulse phase, the welding current signal is first 
dense and then sparse. In the high-frequency pulse phase, the current distribution is relatively uniform and dense. 
Thus, in a single cycle, the molten pool is formed in the low pulse group and with a large size. However, in the 
high pulse group, the transition density of molten drops is too large and concentrated together to form the welding 
hump defect. In the double-pulse MIG welding cycle of about 1.1 s and 1.5 s, the welding seam has an obvious 
arc-breaking phenomenon in the current waveform, hence the weld surface forms defects.

The appearance of weld No. 4 is shown in Figure 3(d). The whole weld shows a uniform and regular fish 
scale pattern. However, the spacing between the fish scale pattern is larger than that of weld No. 1 and No. 
2. Analysis of the intercepted 2 s welding arc current signal showed that in the low-frequency pulse phase, 
welding begins to arc slowly with automatic wire feeding where the arc joins the molten pool. The impact of the 
arc causes the coarse crystals in the molten pool to break up, achieving grain refinement. The welding frequency 
in the low-frequency pulse group increased to further stir the inside of the molten pool, refining the weld grain. 
The corresponding welding arc current signal is sparse. In the high-frequency pulse phase, the welding wire 
is melted and the molten droplets are slowly formed and transferred into the molten pool. The corresponding 
welding arc signal presents a periodic transformation. However, the stirring time is short at the initial stage of 
molten pool formation, thus the spacing between the figure of fish scales is larger.
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Figure 2. DP-MIG weld appearance molding

Figure 3. Waveform of DP-MIG welding current signal

3. Processing and analysis of experimental results 
3.1. Welding arc signal decomposition based on BMD
BMD can effectively separate wideband signals such as square waves, sharp waves, and narrow band signals 
composed of sine waves from the complex non-stationary direct current signal.

For signalsx(n), the iterative process of the BMD method is as follows:
(1) Command r0(n)=x(n).
(2) Filter out the DC component of the signal, intrinsic mode function (IMF): IMF0(n)=IFFT[r0(1)], where 

r0(1) is the first component obtained by the Fourier transform of  r0(n), and command r1(n)=x(n)-IMF0(n).
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(3) Command i=1, the following constrained optimization problem P1 is established:
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(4) The optimization problem P1 is solved by the ACROA algorithm, to get the best ( 1,2,3)j jT = , then find the 
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IMF1 and IMF2 obtained by current signal decomposition using the BMD method are shown in Figure 
4. The BMD effectively separates the square wave components from the signal, the peak-to-peak value and 
pulse frequency of IMF1 obtained by decomposition are consistent with the peak-to-peak value of the square 
wave current signal set in Table 2. The decomposed IMF2 retained the nonlinear information and distortion 
information related to weld quality. Figure 5 shows the instantaneous amplitude (IA) and instantaneous 
frequency (IF) of IMF2 obtained by the decomposition of 2 s signal intercepted in experiments No. 1–4.

Figure 4. IMF1 and IMF2 obtained by BMD decomposition of current signals, (a)–(d) are the decomposition results of the 
interception 2 s of experiments No. 1–4
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Figure 5. Time-frequency analysis of current signal BMD decomposition results (a)–(d) are the IA and IF of IMF2 
components obtained by 2 s decomposition of experiments No. 1–4 current signal interception

Experiments No. 1, 2, and 3 showed consistent duty cycle and pulse frequencies in the welding current 
signal, each conducted at varying welding speeds. Figure 5(c) illustrates noticeable instantaneous amplitude 
changes in the time-domain waveform of the current during experiment No. 3. This is caused by the arc-
breaking phenomenon due to poor welding quality. The time-frequency distributions in Figure 5(a)–(c) reveal 
that with increased welding speed, arc energy rises, leading to a significant increase in frequency component. 
Experiments No. 3 and 4 explored welding current signals under identical welding speed and duty cycle 
conditions, but with different pulse frequencies. In experiment No. 4, the time-frequency information of the 
IMF2 component from the intercepted signal appears more stable. This is because the arc energy in the welding 
process is more concentrated at higher pulse frequencies, resulting in better welding quality.

3.2. Calculation and analysis of characteristic parameters of aluminum alloy double-
pulse MIG welding signal
After the signal decomposition using the BMD method, it is necessary to select a suitable eigenvalue to evaluate 
the effective component of the electrical signal. In this paper, the compound multiscale fuzzy entropy (CMFE) 
recently proposed by Jin et al is used to evaluate the power quality of welding inverters at different welding 
speeds and pulse frequencies [12].

In the CMFE algorithm, to address the impact of shorter time series on fuzzy entropy calculation in during 
coarse-graining, the mean fuzzy entropy value of different coarse-grained sequences with the same scale factor 
is used as the fuzzy entropy value for that scale factor [13]. 

CMFE calculation steps are as follows: 
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(2) For each scale factor τ , the fuzzy entropy of each coarse-grain sequence ( ) (1 )ky kτ τ≤ ≤ is calculated, 
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then to average τ  entropy, CMFE at this scale factor is obtained:
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CMFE synthesizes the fuzzy entropy information of all coarse-grained sequences at the same scale. CMFE 
curves reflect the complexity of time series under different scale factors. For a direct current signal, the greater 
the calculated fuzzy entropy, the more ambiguous it is, the less stable the data, and the worse its power quality. 
Conversely, the lower the fuzzy entropy, the less ambiguous it is, the more stable the data, the better the power 
quality. The welding current signals collected in each experiment were divided into 25 groups of data at equal 
intervals. The duration of each set of data is 1 s, the composite multi-scale fuzzy entropy is calculated ( 2τ = ). 
The calculation results are shown in Figure 6, and the average value of composite multiscale fuzzy entropy for 
each group of experiments is shown in Table 3.

Figure 6. Composite multiscale fuzzy entropy of IMF2 component obtained from BMD decomposition of experiments No. 
1–4 current signal

Table 3. The average composite multiscale fuzzy entropy of each group of experiments

Experiment number 1 2 3 4

Calculated entropy 0.0993 0.1166 0.1694 0.1388

As seen from Table 2 and Table 3, the compound multi-scale fuzzy entropy increases with the increase of 
welding speed. This is because as the welding speed increases, the arc stability in the welding process relatively 
decreases, making the degree of electrical energy dispersion increase, and causing arc breakage. Thus the 
composite multiscale fuzzy entropy of the corresponding welding current signal increases. The weld in experiment 
No. 3 has an obvious arc breakage in the current waveform as it is easy to arc during the welding process, hence 
the entropy value is large.

At the same welding speed, duty cycle, and welding voltage, among other factors, different frequencies 
exhibit reduced complexity in multiscale fuzzy entropy calculation. This indicates the arc is more stable. This 
stability arises because, with increased frequency, the welding speed matches the frequency, leading to periodic 
alignment of the welding waveform. This concentrates the arc energy during the welding process, resulting in a 
corresponding decrease in composite multiscale fuzzy entropy of the welding current signal.

4. Conclusion 
(1) In aluminum alloy double-pulse MIG welding speed, a change in frequency will result in a different 

distribution of arc energy in the time and frequency domains, and thus the stability of welding arc and 
weld forming quality are affected. Therefore, by reasonable matching of aluminum alloy MIG welding 
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current waveform parameters, it can effectively obtain a uniform distribution of arc energy in the time 
domain and frequency domain. This ensures the stability of the welding process and obtains good 
welding results. 

(2) The BMD method is a new adaptive decomposition method suitable for the processing of non-
stationary signals. Through the aluminum alloy double-pulse MIG welding arc electric signal test, real-
time arc signal information reflecting the welding process was obtained. The BMD method was applied 
to extract the characteristic information of the electric arc signal. It can effectively separate different 
frequency DC components, pulsed square wave current, and current signal distortion components of 
double-pulse MIG welding. The composite multiscale fuzzy entropy is used to calculate the distortion 
component. The results showed that the BMD method combined with composite multiscale fuzzy 
entropy can effectively evaluate the signal quality of the welding inverter.
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