
104

Journal of Electronic Research and Application, 2024, Volume 8, Issue 3
http://ojs.bbwpublisher.com/index.php/JERA

ISSN Online: 2208-3510
ISSN Print: 2208-3502

Optimizing Spatial Crowdsourcing: A Quality-
Aware Task Assignment Approach for Mobile
Communication
Jiali Weng, Xike Xie*

University of Science and Technology of China, Hefei 230026, Anhui Province, China

*Corresponding author: Xike Xie, xkxie@ustc.edu.cn

Copyright: © 2024 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: The widespread use of advanced electronic devices has led to the emergence of spatial crowdsourcing, a method
that taps into collective efforts to perform real-world tasks like environmental monitoring and traffic surveillance. Our
research focuses on a specific type of spatial crowdsourcing that involves ongoing, collaborative efforts for continuous
spatial data acquisition. However, due to limited budgets and workforce availability, the collected data often lacks
completeness, posing a data deficiency problem. To address this, we propose a reciprocal framework to optimize task
assignments by leveraging the mutual benefits of spatiotemporal subtask execution. We introduce an entropy-based
quality metric to capture the combined effects of incomplete data acquisition and interpolation imprecision. Building on
this, we explore a quality-aware task assignment method, corresponding to spatiotemporal assignment strategies. Since
the assignment problem is NP-hard, we develop a polynomial-time algorithm with the guaranteed approximation ratio.
Novel indexing and pruning techniques are proposed to further enhance performance. Extensive experiments conducted on
datasets validate the effectiveness of our methods.

Keywords: Spatiotemporal crowdsourcing; Mobile communication; Task quality

Online publication: June 14, 2024

1. Introduction
Spatial crowdsourcing, also known as crowdsensing, involves harnessing human knowledge or smartphone
sensors for tasks related to physical locations [1]. Current research mainly focuses on short-term assignments, where
tasks are matched and assigned to workers until completion [2]. However, if we consider a crowdsourced task set
consisting of multiple spatial tasks, each of which takes a long time to finish, time-sharing collaboration from
multiple workers is needed. This phenomenon is referred to as spatiotemporal crowdsourcing (STCS) [3]. STCS
involves collaboration among multiple workers over time and finds applications in citizen science projects such
as environmental monitoring and traffic surveillance. For task assignment in crowdsourcing, existing solutions
cannot be directly applied in STCS, as none of them investigate the continuous nature and corresponding
spatiotemporal reciprocality between tasks. The novelty of utilizing spatiotemporal reciprocity lies in its ability

105 Volume 8; Issue 3

to leverage the inherent relationships between space and time, allowing for more efficient task assignment and
completion. By incorporating spatiotemporal reciprocity, we can better optimize resource allocation, enhance
task completion rates, and improve overall data quality in STCS applications. As such, novel approaches are
needed to tackle these challenges in STCS effectively.

Achieving a continuous crowdsourced task for all time slots is impractical due to limited budgets [4] and
worker availability, resulting in inherently incomplete probed data. To address this incompleteness, interpolation
(or extrapolation) techniques estimate unprobed values based on the probed ones. However, the accuracy of
these techniques is crucial for maintaining data quality and avoiding the data deficiency problem. Therefore,
balancing budget constraints and data quality is paramount, necessitating a valid metric to summarize
incompleteness and imprecision in crowdsourced results. Moreover, STCS task assignment involves high
computation overhead and the problem is NP-hard. Thus, efficient solutions for task assignment scenarios.

To address the problems we mentioned above, we propose a general entropy-based metric that enables
quality-aware continuous crowdsourcing with spatiotemporal reciprocality, ensuring a balance between planned
expenditure and observable outcomes. We propose and formalize the STCS problem. Then, we develop an
approximation algorithm with a quality guarantee. We also introduce novel indexing and pruning techniques
for efficiency enhancement. Experiments on synthetic and real data are conducted to evaluate efficiency and
scalability.

2. Preliminaries
2.1. Basic definitions
2.1.1. Task set, tasks, and subtasks
A crowdsourcer sends a task set to the server, denoted as T = {τ1, τ2 ,...,τi,..., τx }, where x is the size of the task
set, and τi represents a task with location τi.loc and time duration τi.dur. Without loss of generality, each task’s
duration consists of at most m equal-sized time slots. Thus, a spatiotemporal crowdsourcing task τi can be

decomposed into its subtasks, , where

2.1.2. Worker
W = {w1, w2 ,...,wn} represents a set of n workers. wi

(j) = 1 indicates that workers (wi) available at time slot j.

2.1.3. Cost
c(τi

(j)) denotes the cost of subtask τi
(j). c(τi

(j)) is the Euclidean distance between τi
(j)’s location and the assigned

worker w’s location. Assuming uniform costs for all workers, the total cost of task τi is c(τi
(j)) = .

2.1.4. STCS task assignment
Following the task-worker matching scenario [5], task assignment is the mapping of workers to subtasks, and
it generates the assigned pairs whose form is <subtask, worker> at certain time slots. In Figure 1, the task set
T consists of three tasks, τ1, τ2, and τ3. Each task contains four subtasks and selected workers are assigned to
corresponding subtasks under the limit budget.

106 Volume 8; Issue 3

Figure 1. An Example of STCS Task Assignment.

2.2. Quality metric
2.2.1. Task quality
Given a task set T = {τ1, τ2 ,...}, the task set quality of T as . Assume a STCS task consists of m

subtasks in total, denoted as . Therefore, the quality of task τi is as follows:

(1)

Given the inherent challenge of explicitly defining task quality, we turn to assessing the degree of task
execution through task uncertainty. Entropy, a cornerstone of information theory used to quantify uncertainty
in events and random variables, serves as our chosen metric for task quality. This decision forms the basis for
evaluating both task quality and the information gain resulting from executing a subtask. In Equation (1), a
lower entropy value signifies that more subtasks within a task are completed, indicating greater task certainty
and thus higher quality. To determine a task’s quality, we must retrieve the finishing probabilities p(τi

(j)) for each
of its subtasks.

2.2.2. Subtask finishing probability
The finishing probability of a subtask represents its completion status. In an ideal scenario where all m
subtasks of an STCS task are executed, the total task finishing probability is 1. However, in cases where m =
1, indicating a single subtask, its finishing probability ranges between [0,1]. Generally, considering practical
losses, the finishing probability of a subtask τi is at most . We introduce the spatiotemporal interpolation error
ratio ​ρerr to quantify the information loss due to interpolation errors.

(2)

2.2.3. Spatiotemporal interpolation error ratio
The spatiotemporal interpolation error ratio uses spatiotemporal distance for calculation. The following shows
the definition:

(3)

107 Volume 8; Issue 3

For spatiotemporal interpolation, we take the spatial weight (ws) and temporal weight wt to integrate the
two types of distances of heterogenous domains, where ws + wt = 1 and ws, wt≥ 0. This way, the spatiotemporal
distance between two subtasks τi

(i) and τ(j) can be represented by |τ(i),τ(j)|=ws·SDis|τ
(i),τ(j)|+wt·TDis|τ

(i),τ(j)|. So, for
spatiotemporal interpolation, the weighted distance is used for retrieving the k nearest neighbors. SDis|τ

(i),τ(j)|
measure the spatial proximity between subtasks τi

(i) and τ(j). For temporal interpolation, TDis|τ
(i),τ(j)| is used to

measure the temporal closeness between subtasks τi
(i) and τ(j), referring to the absolute difference of τ(i) and τ(j)’s

timestamps [6].

3. Methodology
3.1. Problem definition
The objective of task assignment optimization is to maximize the overall quality of all tasks within the task set T,
subject to a fixed budget constraint. This is formalized as follows:

Problem 1: Task quality maximization (TQM) with fixed budgets — Given a set of tasks T = {τ1, τ2 ,...},
the TQM problem aims to find an assignment for tasks in T, such that the total task set quality
is maximized, while ensuring that the total cost ∑c(τi) does not exceed the budget (b).

Maximize Q(T)

subject to

The NP-hardness of the TQM problem can be proved by related work [7].

3.2. Approximation algorithm
Leveraging the properties of submodularity and non-decreasingness [7] of Q(·), we can derive a suboptimal
solution with guaranteed approximation ratios in Algorithm 1. By iteratively selecting the subtask that
maximizes the heuristic value τ(*), the algorithm achieves a (1-1/e) approximation to the optimal solution, as
demonstrated in the method [8]. The total time complexity of the algorithm is O(|T|2m3log(m|T|)).

Algorithm 1: Task assignment algorithm

Data: Given budget b> 0, a set of workers W, a task set T
Output: Assigned executed set Tcur

(1) Initialize the states of subtasks { τi
(j)∈ τi} in the T as NULL and initialize T´cur and Tcur as two empty sets.

(2) For each subtask get τi
(j) the corresponding cost c (τi

(j));

(3) Execute the subtask τ(h) yielding the highest quality but not exceeding the budget, T´cur ← {τ(*)};

(4) while do
(5) for τi in T do

(6) for τi
(j) ∈ τ − Tcur dofi

(7) Compute ;

(8) τ(*)← argmax ;
(9) Update selected subtask ’s state to Executed;
(10) Tcur← Tcur ∪ τ(*);

(11) returns T´cur or Tcur with the highest quality as the final result;

108 Volume 8; Issue 3

3.3. Optimization techniques
However, despite the use of an approximation solution, the algorithm still faces quadratic overhead growth
with |T|, which optimization techniques are needed. We note that computing the task set quality Q(·) relies on
calculating ​​ρerr(·), which in turn depends on retrieving subtasks’ k-NN. Therefore, we investigate the locality of
k-NN searching. Our approach involves: (1) saving computation if a subtask’s k-NN remains unchanged during an
iteration, and (2) reducing computation overhead by sharing k-NN results among closely distributed subtasks.

(a) Subtasks and MBRs. (b) Aggregated R-tree based on (a).

 (c) Searching process of the subtask that has the maximum heuristic value.
Figure 2. Index structure for three-dimensional aggregated R-tree.

3.3.1. Index structure
We introduce a three-dimensional aggregated R-tree index to handle spatial and temporal dimensions [9]. Each
node represents a spatiotemporal cuboid covering its child nodes’ MBRs. In Figure 2 (a), subtasks and their
MBRs are shown, with 13 subtasks illustrated as circles. Figure 2(b) displays the aggregated R-tree with some
nodes featuring aggregation information. Each index node includes aggregation information like k-set (k nearest
neighbors), qsum (sum of subtask qualities), cmin (minimum subtask cost), Distmax (influence region), and h+ (upper
bound of heuristic value change). These support subtask selection by bounding heuristic value calculation and
pruning irrelevant branches. Initially, the index is constructed in bulk-loading for all unexecuted subtasks.
During each iteration, updates propagate bottom-up if an index node changes. We first explain Distmax, the
influence region, followed by how aggregation information aids subtask selection, enhancing efficiency.

3.3.2. Influence region of an index node
The so-called influence region of the index node (x) is a region, such that if another object is beyond the region,
it cannot be nearest neighbors for any object in ’s subtree. It is hard to derive the closed-form equation for
the influence region of an index node. Alternatively, it is easy to use Distmax to arbitrate if a subtask touches its

109 Volume 8; Issue 3

influence region. We start by considering the influence region of an object (o), whose k-NNs are k_set(o) = {o1,
..., ok}. Let Disto

max be the maximum distance between object o and {oi}i≤k. Intuitively, another object o´ cannot
be kNN of o, if the weighted distance |o,o´| is higher than Disto

max. Thus, the influence region of object o can be
obtained by expanding o’s spatiotemporal region with (called the Minkowski Sum).

3.3.3. Index-based subtask selection
To select the subtask with the highest heuristic value, we traverse the index using a best-first approach aided by
a priority heap. This heap prioritizes index nodes based on their upper-bound heuristic values, facilitating

efficient selection. The upper bound, denoted as , quantifies the potential increase in quality
achieved by executing subtasks within the node x relative to their cost. In practice, we employ an example to
illustrate this selection process using Figures 2(b) and (c).

3.3.4. Index-based subtask selection
During each round of subtask tentative execution, an identification bit is used to determine whether the node is
affected or not. If not, the node quality remains unchanged, otherwise, we update the quality by incorporating
the corresponding subtask quality change.

3.3.5. Index-based subtask selection
The initial complexity is O(|T|2m3log(m|T|)). Considering the subtask solution space is m|T|, and with the
optimizations, the subtask selection process now takes O(log(m|T|)). The primary computational load occurs
during index updates, where each round involves m|T|) subtasks, each requiring log(m|T|) for updating.
Consequently, the index structure update cost is m|T|log(m|T|) and the overall computational cost for making
an execution decision is now reduced to m|T|log(m|T|). This represents a significant reduction from the original
complexity of O(|T|2m3log(m|T|)) to O(|T|m2log2(m|T|)) Additionally, further improvements in the complexity of
finding knearest neighbors could lead to a total complexity of O(|T|m2log(m|T|)).

4. Results
4.1. Experiment settings

(1) Datasets
We use a real dataset of 10,357 trajectories for workers’ movements. Trajectories are segmented
randomly into 1-5 time slots to simulate active periods. A Beijing POI dataset represents task locations.
STCS task locations are generated using Uniform, Gaussian, and Zipfian distributions. Costs are based
on worker travel distance. We test scalability with 100, 300, and 500 tasks, each with lengths of 10, 20,
and 30 subtasks. Budgets range from $3, $5, and $7 for each task assignment, with $1 representing a
unit distance cost. By default, k is set to 3 for the -NN interpolation and the corresponding weight for
spatial and temporal dimension and are 0.4 and 0.6.

(2) Implementation
Algorithms are implemented in Java and run on a PC with an Intel(R) Xeon(R) CPU E5-2698v4 @
2.20GHz and 256GB main memory. Experiments focus on task assignment, with reported values
averaged across 10 runs.

4.2. Quality results
We compare our quality-aware task assignment method, Approx, with a random assignment approach Rand

110 Volume 8; Issue 3

and the optimal result Opt, in Figure 3. Approx consistently achieves higher quality results across different
data distributions and budgets compared to Rand and is close to Opt. Overall, Approx provides a superior and
deterministic task assignment solution.

Figure 3. Quality of single STCS task assignment.

4.3. Efficiency results
We compare the efficiency and scalability of two methods, Approx and Approx*. Approx* improves upon
Approx by utilizing a three-dimensional index and employing best-first searching with upper-bound pruning.
In our experiments, shown in Figures 4(a) and 4(b), Approx* consistently outperforms Approx by over two
orders of magnitude, demonstrating superior scalability. The breakdown in Figure 4(c) reveals that Approx*
achieves this through efficient -NN computation and index-based pruning, reducing heuristic value calculation
costs significantly. Further tests in Figure 4(d) confirm Approx*’s stability and efficiency even with varying
worker numbers. Across different task distribution scenarios in Figure 4(e), Approx* consistently outperforms
Approx by more than two orders of magnitude, showcasing its dominance in various settings. We test the effect
of parameter k on the time cost of data interpolation in Figure 4(f).

(a) Time vs. |T| 　　　　　　　　　　　　　　　 (b) Time vs. m 　　　　　　　　(c) Time breakdown

　 　

(d) Time of varying |W| 　　　　　　　 (e) Time of varying distributions 　　　　　　　　 (f) Effect of k

Figure 4. Efficiency results of STCS task assignment.

111 Volume 8; Issue 3

5. Conclusion
In this paper, we address the STCS problem, facilitating collaboration among workers for long-term
spatiotemporal crowdsourcing. To overcome practical constraints like limited budgets and worker availability,
we propose a reciprocal framework for optimizing task assignments, aiming to maximize task finishing quality.
We introduce an entropy-based quality metric to measure the incompleteness of crowdsourced results and
develop quality-aware task assignment algorithms with budget constraints. We give a unified approximation
framework and devise an index structure to enhance processing efficiency. Extensive experiments on datasets
demonstrate the effectiveness of the approach.

Disclosure statement
The authors declare no conflict of interest.

Author contributions
Conceptualization: Jiali Weng
Writing: Jiali Weng and Xike Xie

References
[1]	 Ye G, Zhao Y, Chen X, et al., 2021, Proceedings of the 30th ACM International Conference on Information &

Knowledge Management, November 1–5, 2021: Task Allocation with Geographic Partition in Spatial Crowdsourcing,
Association for Computing Machinery, New York, 2404–2413.

[2]	 Kazemi L, Shahabi C, 2018, Proceedings of the 20th International Conference on Advances in Geographic
Information Systems, November 6–9: GeoCrowd: Enabling Query Answering with Spatial Crowdsourcing,
Association for Computing Machinery, New York, 189–198.

[3]	 Xia J, Zhao Y, Liu G, et al., 2019, Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, August 10–16, 2019: Profit-Driven Task Assignment in Spatial Crowdsourcing. Macao, 1914–1920

[4]	 Chen X, Zhao Y, Zheng K, et al., 2022, 2022 IEEE 38th International Conference on Data Engineering (ICDE), May
9–12, 2022: Influence-Aware Task Assignment in Spatial Crowdsourcing. Kuala Lumpur, 2141–2153.

[5]	 Karam R, Melchiori M, 2013, Proceedings of the Joint EDBT/ICDT 2013 Workshops, March 18–22, 2013:
Improving Geo-Spatial Linked Data with the Wisdom of the Crowds Association for Computing Machinery. New
York, 68–74.

[6]	 Wang T, Xie X, Cao X, et al., 2021, 2021 IEEE 37th International Conference on Data Engineering (ICDE), April
19–22, 2021: On Efficient and Scalable Time-Continuous Spatial Crowdsourcing. Chania, 1212–1223.

[7]	 Krause A, Guestrin C, 2005, A Note on the Budgeted Maximization of Submodular Functions, Carnegie Mellon
University.

[8]	 Guttman A, 1984, R Trees: A Dynamic Index Structure for Spatial Searching. ACM SIGMOD Record, 14(2): 47–57.
https://doi.org/10.1145/971697.602266

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

