
28

Journal of Electronic Research and Application, 2024, Volume 8, Issue 3
http://ojs.bbwpublisher.com/index.php/JERA

ISSN Online: 2208-3510
ISSN Print: 2208-3502

Multi-Plate Microbial Monitoring Terminal Based 
on Raspberry Pi 4B
Qirong Luo, Xichang Cai*, Tongyuan Liu

School of Information, North China University of Technology, Beijing 100144, China

*Corresponding author: Xichang Cai, caixc_ip@126.com

Copyright: © 2024 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: We utilized Raspberry Pi 4B to develop a microbial monitoring system to simplify the microbial image-
capturing process and facilitate the informatization of microbial observation results. The Raspberry Pi 4B firmware, 
developed under Python on the Linux platform, achieves sum verification of serial data, file upload based on TCP protocol, 
control of sequence light source and light valve, real-time self-test based on multithreading, and an experiment-oriented file 
management method. The system demonstrated improved code logic, scheduling, exception handling, and code readability. 

Keyword: Raspberry Pi 4B; Object-oriented; Multithreading; Serial port protocol and parsing; TCP 

Online publication: June 14, 2024

1. Introduction
Traditional microbial observation typically relies on optical microscopy, which is plagued by issues such as 
significant susceptibility to human factors, limited stability of observation results, and high reliance on the 
operator’s experience. Furthermore, visual observation methods hinder the informatization of microbial obser-
vation results and pose challenges for file retention. These limitations underscore the need for some alternative 
approaches in the field of microbial observation.

To achieve the informatization and simplification of microbial imaging, Yin et al. developed a portable 
single-plate imaging system [1], while Zhang opted for wireless server access for data storage [2]. However, when 
confronted with large-scale experiments in the laboratory, the aforementioned solution still presents limitations 
such as inadequate experimental capacity and an unreliable wireless network.

It is imperative to employ embedded systems to streamline and enhance microbial monitoring experiments. 
Consequently, this project utilizes Raspberry Pi 4B to develop a microbial imaging system. The system controls 
via serial port for convenient management and storage, incorporates self-checking functionality, and can trans-
mit images to the host computer using TCP protocol.

Shi’s [3] Principle of Serial Communication provides theoretical support for the transmission reception, and 
handling of exceptions in this design. Chen [4] delineates various issues and their corresponding solutions that 
may arise during the fungal shooting process, while Yu offers guidance for utilizing STM32 as the control ter-



29 Volume 8; Issue 3

minal and implementing a Raspberry Pi controlled by a serial port [5]. Cao provides a reference for the realiza-
tion of the whole system [6].

2. Overall structure
This project aims to optimize and digitize the process of microbial monitoring, utilizing Raspberry Pi 4B for 
image capturing. The implementation of the terminal capturing is divided into three primary components: self-
testing and mutual testing, capturing task, and follow-up of failed experiments.

The peripheral circuit of Raspberry Pi 4B consists of a sequence light source, power module, PC upper 
computer, STM32F4, and Raspberry Pi HQ Camera. The hardware block diagram is shown in Figure 1.

RaspberryPi
4B

sequence 
light source GPIO

HQ 
Camera CSI

STM32L4

Serial Port

power 
supply

5V

upper 
computerRJ-45

Figure 1. Hardware block diagram

The workflow of the Raspberry Pi 4B encompasses subtasks such as self-testing, experiment configuration, 
image capturing, and uploading. The program ensures that all image-capturing tasks are directly related to the 
experiment, with the experiment serving as the minimum execution unit of the program. The procedural flow is 
shown in Figure 2.

In the self-test phase, the system initializes the log recorder, sequence light source, and light valve before 
conducting the camera self-test, the serial port mutual test, and obtaining the operating parameters. During the 
experiment setup stage, experimental information must be set priorly. Upon receiving correct instructions, an 
experiment folder will be created; An error message is returned if the instruction is not to set the experiment 
information. During the capturing stage, the previously generated experimental path will be used as the photo 
path. Real-time monitoring of hardware resources is conducted through multithreading during folder path cre-
ation and image capturing. Once capturing is completed, pictures are uploaded via TCP based on user-selected 
mode. Any errors encountered when uploading will be sent back and recorded. 

The program conducts self-tests on the hardware upon system startup to ensure stable operation. Exper-
imental parameters are established prior to capturing the task in order to safeguard data integrity. The system 
uploads data according to user-selected modes, providing flexibility. Real-time resource monitoring allows for 
timely problem detection and enhances system maintainability. Overall, the design emphasizes system flexibili-
ty while ensuring stability and data security, resulting in a reliable and efficient system. 



30 Volume 8; Issue 3

System Power-on

Self-test 
successfully?

Return error

Initialize
Camera self-Test

Serial port test
Parameter get

N

Time setting 
instruction? Set the time yet?

New an experimental folder 

Write real-time 
monitoring results

N Send an error 
message

Start real-time 
monitoring

Y

Capturing 
instructions?

Start real-time monitoring
Capture and save

Initiates a TCP 
connection request Be accepted?

Uploads images 
based on TCP

Time out?

Y

Y

Y

Y

N

N

Y

N

N

Figure 2. Program flow

3. Details of the design
3.1. Object-oriented Implementation
In consideration of the usage frequency of the camera and serial port, this design objectifies these two types of 
hardware to enhance the ease of use and maintainability of the code. The utilization of object-oriented design 
facilitates the construction of code that is highly modular and easily extensible. Furthermore, to further enhance 
code readability and facilitate code management, this design also renders the experiment object-oriented, there-
by enabling a clearer organization and management structure for the code.

In terms of Camera, this design derives the Camera class based on the PiCamera class to better manage the 



31 Volume 8; Issue 3

camera function. The Camera class contains sub-attributes such as the photo path, which requires that the path 
should be set before capturing to ensure the photo can be saved correctly. In addition, according to the different 
display requirements of different strains, the design also takes the configuration of sequence light source and 
light valve as the priority setting item of capturing task. At the same time, the Camera class provides a method 
to manually set the camera exposure factors and white balance parameters, which is used to adjust the display 
effect of the picture. Lastly, the method interface of the quick capturing mode is implemented to improve the 
shooting efficiency.

On the serial port side, this design derives the UART class based on Serial class to better handle serial port 
data. The UART class defines the structure of received serial port data at the Raspberry Pi 4B end, encompass-
ing frame header, device ID, command, data length, data content, checksum, and frame tail. This specification 
facilitates subsequent processing by enabling efficient discrimination and segmentation of data through the 
UART class methods.

This design also makes the experiment object-oriented in order to better organize and manage the infor-
mation and operations related to the experiment. The Raspberry Pi 4B will instantiate the corresponding exper-
imental object after correctly parsing the experimental information setting instructions. The Experiment class 
contains a method for establishing folder paths, which is used to organize folder paths based on experiments. 
The Camera class is defined as a sub-attribute of the Experiment class, so that the capturing process can be exe-
cuted normally after the successful instantiation of the experiment object and configuration of relevant informa-
tion, thereby improving the stability of the capturing work process. The organization of each class is shown in 
Figure 3.

Through the utilization of object-oriented design, this project facilitates code maintenance and debugging, 
while also improving code readability and extensibility. 

Uart class 
(Serial)

Camera class
(PiCamera)

Experiment 
class

Mutual checking method
Protocol parsing method

Self-test method
Capturing method

 experiment folder storage method

File management method
Data storage method

contains

After obtaining the experimental information

contains

contains

drives

After obtaining the capture instruction sub-attribute

Figure 3. The organization of the classes

3.2. Real-time monitoring
The Raspberry Pi 4B, as a lightweight Linux platform, necessitates ongoing resource monitoring to guarantee 
adequate hardware resources and prevent data errors stemming from insufficient resources when accessing 
high-performance peripheral devices such as cameras. This real-time monitoring is essential for ensuring system 
stability.

When the Raspberry Pi 4B is capturing photos and writing files, a new thread will be initiated to conduct 
real-time monitoring of the resources of the Raspberry Pi 4B. This monitoring thread utilizes an infinite loop 
to continuously acquire the parameters of the resource. Upon completion of the thread, the maximum value 



32 Volume 8; Issue 3

is selected as a benchmark for performance requirements to determine whether the resource limit has been 
exceeded. A mutex must be attached to the data within the monitoring thread to prevent data inconsistencies 
resulting from kernel conflicts. Furthermore, the queue parameter transmission method is employed for 
obtaining and storing self-test result data generated during the real-time monitoring process, ensuring the 
integrity and accuracy of the data.

3.3. Acquisition of operation parameters
This function is developed based on the implementation of instructions within “PiOS”, utilizing commands such 
as “cat” and “vcgencmd” to retrieve system performance parameters. By analyzing these parameters, potential 
hardware issues can be promptly identified. Upon detection of any problem, the system will promptly transmit 
the information back to STM32 in order to ensure the stability and reliability of the hardware environment.

The performance parameters acquisition of the Raspberry Pi 4B are crucial for self-testing and real-time 
monitoring. As a result, this design integrates methods for both self-testing and real-time monitoring to create 
a unified interface, thereby reducing code redundancy. This approach enhances code clarity and conciseness 
while also improving code maintainability and expandability, laying a foundation for the stable operation of the 
hardware system.

3.4. Uploading
The TCP upload function is designed to accommodate various demand scenarios by offering initiative and 
passive upload modes. In the initiative mode, upon completion of an experiment, the Raspberry Pi 4B initiates a 
TCP connection request to the upper computer. Failure of the upper computer to respond within a specified time 
period results in marking the experiment and sending it back as an error message. This approach ensures timely 
uploading of experimental data while also enabling prompt identification and handling of abnormal uploads, 
thereby ensuring system stability and reliability.

In passive upload mode, the Raspberry Pi 4B initiates a TCP connection request to the upper computer 
only after receipt of the corresponding control command. This operational configuration enables the Raspberry 
Pi 4B to await external commands for triggering upload actions, thereby facilitating a more adaptable upload 
mechanism. Consequently, users can exercise control over data upload timing in accordance with specific 
circumstances, thus meeting diverse data transmission requirements and enhancing system customizability and 
applicability.

The system’s two upload modes are designed to dynamically select the most appropriate mode based on 
the specific circumstances, thereby enhancing the system’s flexibility and adaptability. Additionally, timely 
response and resolution of abnormal uploading situations ensure the integrity and accuracy of experimental 
data, thus providing a robust guarantee for the smooth operation of the system.

3.5. Protocol analysis and workflow
The whole process of Raspberry Pi 4B capturing task needs to be completed under the serial port data control 
from STM32. Raspberry Pi 4B requires the received serial data to be consistent with the workflow, otherwise, 
it will send back an error alarm message. Multiple capturing and uploading can be carried out under the same 
experiment, but the capturing task cannot be completed without setting experimental parameters.

The data bit in the serial port protocol contains experimental information, which must be analyzed 
systematically based on the corresponding relationship between the two parties. This data serves as fundamental 
information for the Experimental class and should be configured as a priority. To facilitate rapid capturing, 
a specific method is provided within the Camera class, enabling the Raspberry Pi 4B to capture photos 



33 Volume 8; Issue 3

while artificially concealing certain experimental parameters. However, this mode does not establish a file 
management path based on experiments and is only suitable for scenarios that prioritize capturing frequency.

4. Summary and development
4.1. Summary
To establish a dependable microbial monitoring capturing system, the design significantly enhances chip 
performance scheduling, experimental results presentation, and information post-processing. The code is both 
readable and extensible, thus capable of meeting increasingly advanced future needs.

4.2. Development
The program currently lacks a preview feature for capturing. In the experiment, individuals tend to manually 
adjust the desired effect prior to capturing an image. The system does not currently support capturing previews. 
To address this limitation, we plan to utilize the “PyQt” method based on multi-threading to develop a capturing 
preview function on Raspberry Pi 4B in future research.

Author contributions
Conceptualization: Qirong Luo
Writing: Qirong Luo and Tongyuan Liu
Technical support: Xichang Cai 

Disclosure statement
The authors declare no conflict of interest. 

References 
[1] Yin D, Cai X, Chen J, et al., 2023, Design of Single Plate Microbiological Monitoring System for Scientific

Research. China High-Tech, 14: 104–106 + 118. https://www.doi.org/10.13535/j.cnki.10-1507/n.2023.14.30
[2] Zhang J, Li Y, Zhang Z, et al., 2023, Design and implementation of Raspberry Pi Intelligent Flower Watering System.

Computer Knowledge and Technology, 19(19): 107–109 + 116. https://www.doi.org/10.14004/j.cnki.ckt.2023.1091
[3] Shi J, 2022, In-depth Exploration of Common Serial Data Asynchronous Communication Protocols. Microcontrollers

& Embedded Systems.2022(7): 26–29.
[4] Chen D, Chen C, 2017, Discussion on the Application of Microbiological Picture Shooting Technology. Chin J Clin

Lab Sci. 35(10): 729–735. https://www.doi.org/10.13602/j.cnki.jcls.2017.10.03
[5] Yu Q, Guan Y, Huang W, et al., 2023, Research on Aquaculture Water Quality Monitoring Unmanned Boat System

Based on STM32 and Raspberry Pi. Fishery Modernization. 50(5): 33–42.
[6] Cao X, 2021, Design and Implementation of Pathogenic Microorganism Sample Processing and Incubation

Photographing System, thesis, Xidian University.

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


