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Abstract: This study underscores the significance of online monitoring of standard substances for bituminous coal and 
anthracite, two commonly used fossil fuels. Terahertz technology emerges as a powerful non-destructive detection method 
capable of revealing the physical and chemical properties of measured objects. In this research, terahertz time-domain 
spectroscopy technology was employed to investigate the spectral characteristics of four distinct types of bituminous 
coal and anthracite samples. The refractive index and absorption coefficient spectra of these samples were calculated 
across a frequency range of 0.5 THz to 2.5 THz. Furthermore, principal component analysis was conducted using all 
refractive index and absorption coefficient data within this frequency band. Through the analysis and comparison with 
known parameters of coal standard materials, it was established that carbon content primarily influences the refractive 
index of bituminous coal and anthracite, while ash content predominantly affects the absorption effect. These findings 
underscore the potential of terahertz spectroscopy in conjunction with principal component analysis to qualitatively assess 
the similarities and differences between coal samples, thus offering novel insights for the online monitoring of diverse coal 
types and qualities.
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1. Introduction
China has abundant coal resources, and as a major producer and consumer of coal in the world, coal plays an 
important strategic role in the development of China’s national economy [1,2]. Coal can be divided into three 
types according to the degree of coalification: brown coal, bituminous coal, and anthracite. The prices and uses 
of different coal types vary, and so do the environmental pollution they cause. To achieve carbon neutrality [3-4], 
there is an urgent need to develop methods for quickly and accurately monitoring key parameters and elements 
in coal online.

Bituminous coal and anthracite consist of both organic and inorganic matter. The main elements of organic 
matter include carbon, nitrogen, oxygen, hydrogen, and sulfur. The composition of the elements can be detected 
through laboratory analyses.  In industrial production, online monitoring technology plays a crucial role in 
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quickly assessing coal quality. Over recent years, terahertz technology has gained significant traction, showing 
promising applications in non-destructive testing [5-8] and drug identification [9-11]. Wang et al. differences in the 
responses of various coal types within the terahertz frequency band, with several coal components impacting 
the terahertz constant [12-15]. Building upon these findings, this article utilizes a machine learning algorithm 
known as principal component analysis to analyze the refractive index and absorption coefficient data obtained 
from terahertz measurements. By correlating these processed results with the primary physical properties of 
bituminous coal and anthracite, the study aims to investigate the influence of different coal components on 
terahertz optical parameters.

2. Experiments and methods
The experiment utilized the TAS 7400SU transmission THz-TDS system from Advantest, Japan, for detecting 
coal samples. To minimize experimental errors, the air humidity in the optical path was maintained below 1% 
RH, and sample data was measured at a temperature of 24°C. Each sample was subjected to three repeated 
measurements, and the average value was taken as the sample information. Two types of coal powder were 
employed in the experiment: anthracite (ZBM097A) and bituminous coal (ZBM102, ZBM111A, ZBM111C). 
Table 1 presents the chemical composition and physical properties of the four coal samples.

Table 1. Encoding and property parameters of four coal samples

Content (%)
Coal number

ZBM097A ZBM102 ZBM111A ZBM111C

Carbon 79.96 57.82 74.16 77.14

Hydrogen 3.31 3.40 4.44 4.59

Nitrogen 1.12 1.02 1.38 1.26

Volatile 8.99 30.43 33.64 31.29

Ash 11.87 25.88 9.62 8.00

3. Results and discussion
3.1. Terahertz spectroscopic analysis
After performing Fast Fourier Transform (FFT) on the terahertz spectrum containing physical information of the 
tested sample, the refractive index spectrum and absorption coefficient spectrum of the sample were calculated 
using optical parameter calculation formulas [16-18]. Figure 1 (a) displays the refractive index spectra of four coal 
samples in the 0.5-2.5 THz band. Significant differences in the refractive index spectra of the four coal samples 
in the terahertz band were evident. Anthracite ZBM097A exhibited the highest refractive index spectrum, with 
an average refractive index of 1.60, notably higher than that of bituminous coal. Therefore, terahertz technology 
could be utilized for the initial calibration of anthracite in rapid coal identification. The average refractive index 
spectra of ZBM111C, ZBM111A, and ZBM102 bituminous coal decreased sequentially, with values of 1.54, 
1.52, and 1.47, respectively, all lower than those of anthracite. Additionally, the refractive index of ZBM102 
coal demonstrated a clear trend of initially increasing and then stabilizing. The average refractive index of all 
samples was plotted against the carbon content of the samples, revealing the relationship between the carbon 
content in the samples and the average refractive index spectrum (K), as depicted in Figure 1 (b). According to 
the data fitting, the average refractive index increased exponentially with carbon content.
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Figure 1. (a) Terahertz refractive index spectra of each sample, (b) relationship between carbon 
	
Figure 2(a) displayed the absorption coefficient spectra of four samples within the frequency range of 

0.5–2.5 THz. The absorption coefficients of the four samples increased with the frequency, and within the 
specified frequency range, the overlapping positions of absorption peaks resulted in no distinctive characteristic 
absorption peak in the absorption coefficient spectrum. The relative order of absorption coefficients of the four 
samples at various terahertz frequencies remained consistent, with ZBM111C exhibiting the smallest absorption 
coefficient and ZBM102 displaying the largest absorption coefficient. Through data fitting, it was determined 
that the absorption coefficient slopes of the four samples were 18.72, 18.88, 16.31, and 12.26, respectively. 
Plotting the slope of the absorption coefficient of each sample against the ash content of the sample revealed the 
relationship between the change in ash content in the sample and its absorption coefficient change, as depicted 
in Figure 2 (b). From Figure 2 (b), it was observed that there was an approximately identical trend between the 
ash content of the sample and the slope of the absorption coefficient (S).

　

Figure 2. (a) Terahertz absorption coefficient spectra of each sample, (b) variation of ash content and absorption spectrum 
slope (S) in the samples

3.2. Principal component analysis
Principal Component Analysis (PCA) is a statistical technique that converts a set of correlated variables into 
a set of linearly uncorrelated variables through orthogonal transformation [19-20]. hese transformed variables 
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are termed principal components. Each principal component encapsulates unique information, with the first 
principal component containing the highest amount of information. By examining the scores of the first 
principal component, one can discern the interrelationships between samples, facilitating sample classification.

Figure 3(a) displays the two-dimensional principal dispersion point plots of each sample obtained by using 
the refractive index spectrum as the input variable. The scatter plot revealed a significant clustering effect of the 
four samples on PC1, wherein the closer the distance between samples, the higher the similarity; conversely, 
the farther the distance, the greater the difference. Among them, sample ZBM111A was closest to ZBM111C, 
followed by ZBM097A. ZBM102 was distant from the other three samples and had the smallest PC1 score, 
markedly differing from the others. By comparing the PCA results with the known physical properties of 
the samples, it was concluded that carbon content was the main factor affecting the refractive index of coal 
materials in the terahertz band. The carbon content of ZBM111A and ZBM111C was 74.16% and 77.14%, 
respectively, with a relatively small difference. In contrast, the carbon content of ZBM102 was 57.82%, 
significantly differing from the other samples. Corresponding to Figure 3 (a), ZBM102 appeared farthest from 
the other samples. Therefore, there was a certain correspondence between the relative values of carbon content 
and the differences in refractive index among the samples. Additionally, other parameters such as ash content 
also affected the refractive index of coal in the terahertz frequency band to varying degrees. As the ash content 
increased, the average refractive index of the sample decreased relatively. This demonstrates that their similar 
refractive indices result from the combined effect of various physical parameters. Consequently, the refractive 
index of coal in the terahertz frequency band is determined by a combination of all physical properties, with 
carbon content being the most influential factor.

　

Figure 3. (a) Two-dimensional principal dispersion point plots of the sample based on refractive index spectrum, (b) two-
dimensional principal dispersion point plots of the sample based on absorption coefficient spectrum.

Similar to the above analysis process, all absorption data in the frequency range of 0.5 THz to 2.5 THz 
were utilized as input variables to compute a two-dimensional principal component dispersion point map based 
on the absorption coefficient spectrum, as depicted in Figure 3 (b). From the graph, it could be observed that 
the positions of the four samples were relatively independent. ZBM111C exhibited the lowest PC1 score, 
followed by an increase in PC1 scores for ZBM111A, ZBM097A, and ZBM102. Among the main components 
of the sample, the ash content showed the same trend of change as the PC1 score. Therefore, the ash content 
was the primary factor affecting the absorption coefficient of coal substances in the terahertz band. Meanwhile, 
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the content of volatile matter in the sample mirrored the PC2 score pattern: ZBM097A had the lowest volatile 
matter content, corresponding to the lowest PC2 score of ZBM097A. The difference in volatile content among 
the other three samples was relatively small, and the corresponding PC2 scores of the three samples in the figure 
were similar. Hence, the absorption coefficient of coal in the terahertz frequency band was also determined by a 
combination of all physical properties, among which ash content was the most influential factor.

4. Conclusion
Terahertz spectral tests were conducted on four bituminous coal and anthracite samples, and their refractive index 
spectra and absorption coefficient spectra were calculated. The findings revealed significant variations in terahertz 
optical parameter spectra among coals with different component contents. Principal component analysis was 
conducted on the data to delve deeper into the refractive index and absorption coefficient of the samples in the 
terahertz band. It was found that each component influences the coal’s refractive and absorption coefficients to 
varying degrees, with carbon content primarily affecting the refractive index and ash content primarily impacting 
the absorption coefficient. The analysis effectively discerned similarities and differences between coal samples. By 
expanding the dataset to include more coal types, machine learning methods could be utilized to further analyze 
terahertz optical parameters, aiding real-time online monitoring of coal quality and types.
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