
33

Journal of Electronic Research and Application, 2024, Volume 8, Issue 2
http://ojs.bbwpublisher.com/index.php/JERA

ISSN Online: 2208-3510
ISSN Print: 2208-3502

Congestion Control Algorithms for the Internet – A
Secondary Publication
Satoshi Utsumi*

Fukushima University, Fukushima, Japan

*Corresponding author: Satoshi Utsumi, sutsumi@gmail.com

Copyright: © 2024 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: In the last five years, there has been a V-shaped recovery in the number of papers on congestion control
algorithms on the Internet. In this paper, congestion problems on the Internet are discussed, such as congestion collapse
and bufferbloat from the perspective of the necessity of congestion control algorithms. The typical congestion control
algorithms are introduced, and the research areas and methods of congestion control algorithms are described. Recent
research trends and future prospects of congestion control algorithms are also presented.

Keywords: TCP; Congestion control algorithm; Congestion; Internet

Online publication: March 29, 2024

1. Introduction
The number of papers on congestion control algorithms on the Internet has shown a V-shaped recovery in the
last five years. In IEEE Xplore, the keyword search “Internet congestion control” yielded 1,577, 1,247, 795,
and 1,117 hits from 2002 to 2006, 2007 to 2011, 2012 to 2016, and 2017 to 2021, respectively [1]. The period
from 2012 to 2016 was a winter period for research on congestion control algorithms. The last five years have
seen a resurgence in research on congestion control algorithms worldwide, partly due to the emergence of BBR
(bottleneck bandwidth and round-trip propagation time) announced by Google Inc [2–4].

This paper begins by defining congestion and its significance in prompting the development of congestion
control algorithms. Various congestion-related challenges in the Internet, such as congestion collapse and
buffer bloat are then described. Following this, a historical overview of congestion control algorithms within
the context of Internet development is provided. This section highlights the evolution of approaches adopted
to mitigate congestion. Furthermore, this paper outlines prevalent research areas and methodologies employed
in the study and implementation of congestion control algorithms. Moreover, recent research trends and future
prospects regarding congestion control algorithms are discussed, offering insights into emerging directions
and potential challenges. The paper concludes by summarizing key insights gleaned from the discussion and
drawing conclusions regarding the current state and future outlook of congestion control algorithms.

34 Volume 8; Issue 2

2. Congestion and congestion control algorithms
2.1. Congestion (e.g. traffic)
To understand why congestion control algorithms are needed in the first place, this section defines congestion
and discusses historically important congestion problems in the Internet.

2.1.1. Definition of congestion
In this paper, congestion is defined as the occurrence of a packet queue or packet drop in the buffer of the
bottleneck link when the input load to the bottleneck link on the communication path exceeds the link’s capacity
(bandwidth). When the input load to the bottleneck link exceeds the bandwidth, the size of the packet queue in
the bottleneck link’s buffer may exceed the buffer size, leading to buffer overflow and packet drop. Congestion
leads to degradation in performance metrics such as throughput, latency, and packet drop rate.

2.1.2. Congestion collapse
Transmission control protocol (TCP) is a protocol designed to facilitate highly reliable communication
between terminals [5]. The TCP described in RFC (Request for Comments) 793, issued in 1981, did not include
congestion control algorithms but implemented flow control, as shown in Figure 1. [5]. Flow control involves
regulating the amount of data transmitted by the sender based on the receiver’s capacity to manage incoming
data. Specifically, flow control in TCP is achieved by the receiver notifying the sender of the buffer size,
indicating the amount of data it can receive, through acknowledgment (ACK) packets. The TCP receiver sends
an ACK packet for each received data packet. In other words, in RFC 793, TCP’s flow control ensures that
the amount of data in flight (i.e., the data packets sent by the TCP sender but not yet acknowledged by ACK
packets) matches the buffer size of the TCP receiver as indicated by the ACK packets. However, this method
led to a phenomenon known as congestion collapse. Congestion collapse, as described in literature, occurs due
to congestion-induced retransmissions (referred to as retransmissions here) that result from congestion [6,7].

Figure 1. RFC 793 flow control

When severe congestion occurs, leading to packet drops or significant buffering delays, TCP resends
data packets for which ACK packets have not arrived within a certain time frame. Buffering delay refers to
delays caused by packet queues in bottleneck links. The time elapsed from sending a data packet until its

35 Volume 8; Issue 2

corresponding ACK packet is received and the subsequent initiation of retransmission is termed retransmission
timeout (RTO). Since TCP in RFC 793 implements flow control without a congestion control algorithm, upon
RTO, it resends all data packets that have timed out sequentially. Due to the imprecise calculation of RTO in
RFC 793, data packets may be resent even if packet drops have not occurred. Consequently, congestion worsens
as successive retransmitted packets accumulate in the bottleneck link, leading to a decrease in throughput. This
phenomenon is known as congestion collapse. Reports indicated that during a congestion collapse in October
1986, the throughput between Lawrence Berkeley Laboratory (LBL) and the University of California, Berkeley
(UC Berkeley) decreased from 32 kbit/s to 40 bit/s [8].

To address congestion collapse, the loss-based congestion control algorithm was devised, which reduces
the packet transmission rate upon detecting packet loss to alleviate congestion. In Section 2.2, we introduce
Tahoe, Reno, and CUBIC as examples of loss-based congestion control algorithms.

2.1.3. Bufferbloat
The typical loss-based congestion control algorithm increases the packet transmission rate until it detects packet
loss. Upon detecting packet loss, it decreases the packet transmission rate to alleviate congestion.

In recent years, due to the decreasing cost of memory, there has been a trend towards increasing buffer
sizes in nodes such as routers and switches connected to networks. Increasing buffer sizes has the effect of
reducing packet discard rates and avoiding decreased bandwidth utilization rates.

On the other hand, as shown in Figures 2 and 3, the magnitude of buffering delays for flows controlled
by loss-based congestion control algorithms like Reno or CUBIC depends on the size of the buffers at the
bottleneck link. When the buffers at the bottleneck link, where flows controlled by loss-based congestion
control algorithms exist, are large, the buffering delay at that bottleneck link increases. Depending on the
bandwidth and buffer size at the bottleneck link, buffering delays lasting several hundred milliseconds or
seconds may persist. This is particularly detrimental for applications that prioritize real-time performance, such
as video conferencing systems like Zoom or Microsoft Teams, online multiplayer games, and remote control/
surveillance applications. This phenomenon in the Internet is referred to as Bufferbloat and has been observed
since around 2009 [9-11].

Figure 2. When the buffer at the bottleneck link is small

36 Volume 8; Issue 2

Figure 3. When the buffer at the bottleneck link is large

2.2. Congestion control algorithm
When we refer to congestion control algorithms, we generally mean the methods of adjusting the packet
transmission rate between endpoints. In this section, we will focus on congestion control algorithms that have
been widely used on the Internet, introducing algorithms aimed at resolving congestion collapse and bufferbloat.

2.2.1. Tahoe
Tahoe is an early version of the loss-based congestion control algorithm developed by Van Jacobson in 1988 [8].
Here, we provide explanations of basic terminologies related to congestion control algorithms. Round-trip time
(RTT) refers to the time it takes for a sender to transmit a data packet and receive the corresponding ACK
packet. Congestion window refers to the parameter that adjusts the amount of data in transit among the packets
sent but not yet acknowledged by ACK packets. In other words, the congestion window regulates the amount
of data in transit. Typically, congestion control algorithms adjust the packet transmission rate by controlling the
congestion window.

Figure 4 illustrates the change in the congestion window of Tahoe. At the start of the connection (time 0 (s)),
the congestion window begins with a data volume equivalent to one packet and undergoes exponential growth
during a slow start. Here, it’s assumed that a finite value initializes the threshold. When the congestion window
reaches the threshold, it transitions to congestion avoidance mode, where it increases linearly. Upon detecting
packet loss, the congestion window resets to the size of one packet, and a slow start is executed again. At this
point, the threshold is set to half the size of the congestion window when packet loss is detected. Tahoe was
once included in Linux 1.0 but is not currently part of the Linux kernel.

Figure 4. Changes in Tahoe’s congestion window

37 Volume 8; Issue 2

Tahoe made it possible to avoid congestion collapse. However, Tahoe introduced a new challenge of
decreased utilization of bottleneck bandwidth because it resets the congestion window to the size of one packet
and executes a slow start each time packet loss is detected.

2.2.2. Reno
Sections 2.2.2 through 2.2.5 describe the behavior of congestion control algorithms using the network emulator
Mininet [12]. Specifically, the network topology depicted in Figure 5 is configured on Mininet, with two
transmission hosts sending TCP flows controlled by the same congestion control algorithm, one flow each. In
other words, transmission host S1 sends a TCP flow to receiving host R1, while S2 sends a TCP flow to R2 as
illustrated in Figure 5. The bottleneck bandwidth is set to 50 Mbit/s, the round-trip propagation delay between
hosts is 40 ms, and the buffer size at the bottleneck link is 1 MByte. The observation period is set to 120 s. Each
section presents the time evolution of the amount of data transmitted and the RTT of the TCP flow sent from S1
according to the congestion control algorithm explained in that section.

Figure 5. Network topology

Reno is an improved version of Tahoe, which is a loss-based congestion control algorithm [13]. Figures 6–7
respectively illustrate the time evolution of the amount of data transmitted and the RTT for Reno flows.
From Figure 6, we observe that immediately after the peak of the transmitted data amount, indicating the
detection of packet loss, the amount of data being transmitted reduces by half. Subsequently, it linearly
increases again. This behavior in Reno occurs because, fundamentally, it does not revert to a slow start after
detecting packet loss but rather halves the congestion window and repeats congestion avoidance. Reno
adjusts the congestion window using AIMD (additive-increase/multiplicative-decrease) based on
information from received ACK packets and detected packet loss. Compared to Tahoe, Reno reduces the
congestion window by a smaller margin upon detecting packet loss, thereby improving the utilization of
bottleneck bandwidth. From Figure 7, we can observe that the RTT for Reno flows linearly increases similarly
to the amount of data transmitted and decreases after the occurrence of packet loss. The extent of the
decrease depends on the proportion of Reno flows that detect packet loss. Reno has been implemented in
Linux 1.3.90 [14], as well as in Windows 95/NT.

38 Volume 8; Issue 2

Figure 6. Changes in the amount of data being sent by Reno

Figure 7. Reno RTT change

2.2.3. CUBIC
CUBIC is another loss-based congestion control algorithm. Figures 8 and 9 show the time variation of the
amount of data being transmitted and the RTT of the CUBIC flow, respectively [15]. Figure 8 shows that the
amount of data being transmitted increases cubically then decreases significantly immediately after its peak,
and then increases cubically again. Generally, CUBIC reduces the congestion window to 70% of its size upon
detecting packet loss. CUBIC is known to achieve high utilization rates even in networks with large bottleneck
bandwidth. Additionally, the “Fast Convergence” feature allows CUBIC to implement two different cubic
increase methods for congestion avoidance. In Figure 8, two cubic shapes with different heights based on
turning points determined by different calculation methods are observed. Fast Convergence aims to improve the
convergence speed of throughput between CUBIC flows. Since CUBIC only reduces the congestion window to
70% upon detecting packet loss, compared to Reno, which halves it, there tend to be larger buffering delays in
paths with large buffer sizes at bottleneck links. Compared to the RTT of Reno shown in Figure 7, the RTT of
CUBIC in Figure 9 is generally larger. CUBIC has been implemented in Linux 2.6.16 and Windows 10.

39 Volume 8; Issue 2

Figure 8. Changes in the amount of data being sent by CUBIC

Figure 9. Change in RTT of CUBIC

2.2.4. BBR
As shown in Section 2.1.3, loss-based congestion control algorithms such as Reno and CUBIC can cause
bufferbloat when the buffer at the bottleneck link is large. 2016, Google introduced BBR [4]. BBR is a
congestion control algorithm aimed at reducing buffering delay at bottleneck links, referred to as congestion-
based congestion control. BBR aims to reach the optimal operating point, achieving maximum throughput and
minimum RTT, by iterating through two phases: ProbeBW and ProbeRTT. In the ProbeBW phase, it temporarily
increases the packet transmission rate to explore maximum throughput, while in the ProbeRTT phase, it
significantly reduces the congestion window to explore minimum RTT. Using the values of the maximum
throughput and minimum RTT obtained during these explorations, BBR determines the packet transmission
rate and congestion window size. BBR has been observed to operate near the optimal operating point when
occupying the bottleneck link with a single flow. However, when multiple flows share the bottleneck link, it
operates away from the optimal operating point, leading to increased buffering delay and RTT [16].

Figures 10–11 show the time variation of the amount of data being transmitted and the RTT of a BBR
flow, respectively; the decrease in the amount of data being transmitted and the RTT every 10 seconds or
so indicates the time when the ProbeRTT phase is executed. By comparing Figure 11 with Figures 7 and
9, it is evident that the RTT of BBR is smaller than that of Reno and CUBIC. This suggests a certain degree of
success in mitigating buffering delay. BBR has been integrated into Linux since version 4.9 and is used on
Google’s own servers, such as YouTube servers, as well as on AWS (Amazon Web Services).

40 Volume 8; Issue 2

Figure 10. Changes in the amount of data being sent by BBR

Figure 11. BBR RTT changes

2.2.5. Copa
Copa is a delay-based congestion control algorithm based on queueing theory [17,18]. Copa aims to maximize the
objective function U = log(λ) - δ * log(d), where λ (packet/s), d (s), and δ (0 < δ ≤ 1.0) represent throughput,
buffering delay, and Copa’s parameter, respectively. Specifically, Copa attempts to achieve this objective by
determining the packet transmission rate λ as 1 / (δ * d) (packet/s) in response to the observed buffering delay d.
The standard value for δ is typically δ = 0.5.

Copa has a competitive mode designed for sharing flows with loss-based congestion control algorithms
and bottleneck links. When a Copa flow cannot observe the recent minimum RTT, it switches to the competitive
mode, assuming it shares the bottleneck link with a loss-based congestion control flow. In the competitive
mode, Copa adjusts the value of δ using additive-increase/multiplicative-decrease (AIMD) based on ACK
packet reception and packet loss detection, aiming to minimize 1/δ = 2.

Copa aims to improve fairness in throughput with flows using loss-based congestion control algorithms
like Reno or CUBIC by actively sending packets more aggressively than a Copa flow where 1/δ is fixed and
adjusted using AIMD with δ = 0.5.

Figures 12 and 13 show the time variation of the amount of data being sent and the RTT of the Copa flow,
respectively. The total throughput and average RTT of the two flows, Reno, CUBIC, BBR, and Copa, are shown
in Figure 14, based on the data observed in Sections 2.2.2 through 2.2.5. Figure 14 shows the total throughput

41 Volume 8; Issue 2

and average RTT for the Reno, CUBIC, BBR, and Copa flows, respectively. Figure 14 shows that the total
throughput of the Copa flow is almost the same as that of the flows using other congestion control algorithms,
while the average RTT is significantly improved.

Copa has been implemented in CCP (congestion control plane) [19] and mvfst [20], and Meta (formerly
Facebook) uses Copa for uploading live video on Android devices.

Figure 12. Changes in the amount of data being sent by Copa

Figure 13. Change in RTT of Copa

Figure 14. Total throughput and average RTT

42 Volume 8; Issue 2

3. Research area of congestion control algorithms
Congestion control algorithms have been incorporated into transport layer protocols such as TCP, QUIC [21],

and datagram congestion control protocol (DCCP) [22]. Much of the research on congestion control algorithms
focuses on how to implement high-performance, fair, or efficient methods for adjusting packet transmission
rates. In congestion control algorithm research, the following metrics are commonly used and evaluated.

(1) Throughput
Throughput indicates how much data is transmitted in a unit of time. Instantaneous throughput
is considered in some cases, while in others, only average throughput is considered. Throughput
is calculated by excluding duplicate data received. A higher throughput value indicates better
performance. Throughput is typically measured in units such as gigabits per second (Gbit/s), megabits
per second (Mbit/s), or packets per second (packet/s).

(2) Throughput
Latency refers to the time taken for packet transmission and reception between terminals, including
one-way delay and round-trip time (RTT). Generally, terminal-to-terminal latency consists of
propagation delay, processing delay, and buffering delay. Propagation delay is the time taken for
the physical signal of a packet to pass through the transmission medium and reach the next node.
Processing delay refers to the time taken for packet forwarding processing at a node, including routing
and switching processes. Among these, minimizing buffering delay is one criterion for evaluating the
effectiveness of congestion control algorithms. Reducing delay is desirable, and it is typically measured
in units such as nanoseconds (ns), microseconds (μs), milliseconds (ms), or seconds (s).

(3) Transfer time
Transfer time is the time from the start of transmission to the completion of transmission of data of a
certain size. It is equal to the data size divided by the average throughput from the start of transmission
to the completion of transmission. A smaller transfer time indicates better performance. Transfer time is
typically measured in units such as seconds, minutes, or hours.

(4) Fairness
Fairness is a metric, devised by Raj Jain, that indicates how equitably flows sharing a bottleneck link
are dividing bandwidth [23]. It is also known as Jain’s fairness index. Fairness is represented by a value
between 0 and 1, where a value closer to 1 indicates better fairness. It is a unitless measure.

(5) Packet drop rate
Indicates how many packets are dropped in packet transmission and reception between terminals. The
packet drop rate takes a value between 0 and 1, with a value closer to 0 indicating a good condition.
The unit is none or %.

In recent years, an indicator called “harm” [24] has been proposed to demonstrate how much impact a flow
sharing the bottleneck link has on other flows. “Harm” is expected to range from 0 to 1, with smaller values
indicating better conditions. The specific calculation method for “harm” is detailed in several papers [24,25].

Additionally, an indicator called “power” [26], which divides throughput by latency, has been proposed
by the queueing theory expert Leonard Kleinrock. The value of “power” indicates better conditions when it is
larger.

Node support for terminal-to-terminal congestion control algorithms includes active queue management
(AQM) [27,28] and explicit congestion notification (ECN) at the network layer [29], and research on these methods
has been conducted extensively.

43 Volume 8; Issue 2

4. Research methodology for congestion control algorithms
As described in Section 3, research on congestion control algorithms is often aimed at improving the
communication performance between terminals. More specifically, research is commonly conducted in the
following manner:

4.1. Proposed congestion control algorithm
The objective of this study is to propose a new congestion control algorithm or improvement method that is
more efficient, fair, or effective than the previous ones in a given network environment.

4.2. Simulation experiments
The performance of the previously proposed and newly proposed congestion control algorithms can be
evaluated using network simulators. Free simulators such as ns-2 [30] and ns-3 [31] are commonly used.

4.3. Emulation experiments
Emulation typically involves evaluating the performance of previously proposed congestion control algorithms
as well as newly proposed ones using network emulators. Traditionally, experiments were often conducted
by connecting multiple computers to configure a network and using network emulators such as dummynet [32]

and traffic control (tc) [33]. However, recently, it has become more common to conduct evaluations using tools
like Mininet [12] and Mahimahi [34] on a single computer. With Mininet, it is possible to create virtual network
topologies using tc. Additionally, Mininet supports the use of active measurement tools like iPerf [35].

4.4. Experiments in real-world environments
Experiments in real-world environments involve evaluating the performance of previously proposed
congestion control algorithms as well as newly proposed ones in real network environments. This can be done
by conducting experiments in proprietary network environments such as company networks or by utilizing
publicly available experimental servers (such as iPerf servers [36]) or cloud platforms (like Amazon EC2 [37]) via
the internet.

4.5. Mathematical performance analysis
The experimentation involves determining the performance metrics such as throughput and transfer time
analytically for the proposed congestion control algorithms as well as existing ones. This not only serves the
purpose of performance evaluation but also aids in proposing new congestion control algorithms [38,39], such as
those ensuring fair performance along with the flow controlled by the congestion control algorithms analyzed.

5. Recent research trends and prospects
This section describes recent research trends and prospects for congestion control algorithms.

5.1. Recent research trends
5.1.1. Survey of congestion control algorithms share on the Internet
In Mishra et al., study [40], a tool was developed to estimate the congestion window corresponding to consecutive
RTTs at the receiver side of TCP. Additionally, an offline analyzer was constructed to identify TCP congestion
control algorithms based on the time-series tracking history of congestion windows. Using these tools, an
investigation into the usage of TCP congestion control algorithms revealed that approximately 36% of websites

44 Volume 8; Issue 2

employ CUBIC, while around 22% use BBR. It was estimated that BBR accounts for over 40% of the total
traffic on the Internet.

5.1.2. Application of machine learning to congestion control algorithms [41-48]
Remy [41] optimizes and generates congestion control algorithms offline based on pre-specified congestion
control objectives, protocol assumptions, and models of both network and traffic. Performance-oriented
congestion control (PCC) [42] sends packets at two different rates, slightly higher and slightly lower than the
current rate. If either of these rates performs better, it is selected as the next packet transmission rate, and
this direction continues as long as performance improves. This online learning approach helps overcome the
limitations of Remy’s offline optimization, where performance may degrade if input assumptions and network
models deviate from the actual network environment. Recently, practical hybrid approaches combining classic
congestion control methods with advanced deep reinforcement learning techniques have emerged [48].

5.1.3. Performance evaluation and analysis model for multiple flows in core link
The conventional congestion control algorithm analysis models implicitly assumed congestion occurred only
at the edge links. In other words, evaluations of congestion control algorithms were limited to scenarios with
tens of flows and bandwidth scales of several hundred Mbit/s. However, in recent years, it has become known
that congestion can also occur in core links with thousands of flows and bandwidths ranging from 1 to several
hundred Gbit/s. In Philip et al.’s work [49], it was revealed that the analysis model of NewReno, derived from
assuming congestion at edge links, does not hold in core links. Furthermore, it was shown that BBR flows,
which demonstrate good fairness at edge links, may become highly unfair in core links.

5.1.4. Reverse engineering of congestion control algorithms
The internal structure of congestion control algorithms in non-open source operating systems may be unknown.
Ferreira et al. [50] proposed a method for reverse engineering congestion control algorithms. This method
derives a synthesis program based on the observed behavior of the original congestion control algorithm. By
implementing the synthesized program, the congestion control algorithm can be evaluated.

5.1.5. Competing heterogeneous congestion control algorithms [39, 51,52]

Studies on competition between different congestion control algorithms at bottleneck links have been conducted
since around 2000 [53,54]. However, with the emergence of new congestion control algorithms like BBR and
Copa, such research has continued to be active in recent years. In Ware et al.’s work [51], the interaction between
flows using loss-based congestion control algorithms such as CUBIC and Reno and BBR flows is analyzed and
verified through experiments. In another research [39], an improved version of BBR that improves throughput
fairness when BBR and CUBIC flows contend for the bottleneck link was proposed and evaluated using an
analytical method. Goyal et al. [52] proposed and evaluated the congestion control algorithm NimbusCC based
on a method for detecting whether cross-traffic is elastic. Here, “elastic” behavior refers to increasing packet
transmission rates when more bandwidth is detected to be available and decreasing them otherwise. When
sharing bottleneck links with flows using elastic congestion control algorithms, NimbusCC operates in TCP-
competitive mode, behaving similarly to CUBIC or NewReno. When sharing bottleneck links only with non-
elastic cross-traffic, NimbusCC operates in delay-controlling mode, achieving low buffering delay using
algorithms such as Vegas, Copa (non-competitive mode), or BasicDelay inspired by the explicit control protocol
(XCP) [55-57].

45 Volume 8; Issue 2

5.2. Prospects
In the past, performance evaluation of congestion control algorithms was predominantly conducted in uniform
environments using simulators or emulators. In recent years, there has been some effort to evaluate the
performance of congestion control algorithms in Internet environments, but the evaluation environments are
not yet sufficiently established. Although experimental iPerf servers [36] are available, the number of servers
that are actually operational and usable is limited. Furthermore, while Pantheon [58] was introduced in 2018 with
the expectation of providing a comprehensive evaluation environment for congestion control algorithms on
the Internet, support for it has already been discontinued. Recently, issues such as extreme unfairness between
flows using the same congestion control algorithm in real environments, as highlighted by Starvation [59], have
underscored the increasing importance of performance evaluation and behavioral analysis of congestion control
algorithms in practical environments. There is a growing need for the development of congestion control
algorithms that truly perform well and fairly on the Internet based on performance evaluations in environments
where congestion control algorithms can be evaluated on a large scale [60].

6. Conclusion
In this paper, congestion issues such as congestion collapse and Bufferbloat were discussed from the perspective
of why congestion control algorithms are necessary on the Internet. Additionally, representative congestion
control algorithms in the history of the Internet were introduced, and the research areas and methodologies of
congestion control algorithm studies were discussed. Furthermore, recent research trends and future prospects
of congestion control algorithms were addressed. This paper serves to contribute to the emergence and growth
of young researchers in the field of congestion control algorithms on the Internet.

Funding
This work was supported by JSPS Grants-in-Aid for Scientific Research JP20K11786 and JP21KK0202. We
thank Mai Komatsubara and Keisuke Kano of Fukushima University for reviewing the final manuscript.

Disclosure statement
The author declares no conflict of interest

References
[1] IEEE Xplore, 2022, https://ieeexplore.ieee.org/Xplore/home.jsp
[2] Hasegawa T, 2020, Internet Congestion Control: Past and Future. Communications Technology Journal, 2020: 33–38.
[3] Web of Science, 2022, https://www.webofknowledge.com
[4] Cardwell N, Cheng Y, Gunn CS, et al., 2017, BBR: Congestion-Based Congestion Control, Commun. ACM, 60(2):

58‒66.
[5] Postel J, (ed) 1981, Transmission Control Protocol (RFC 793), IETF Datatracker, https://datatracker.ietf.org/doc/

html/rfc793
[6] Nagle J, 1984, Congestion Control in IP/TCP　Internetworks (RFC 896), IETF Datatracker, https://datatracker.

ietf.org/doc/html/rfc896#:~:text=of%20that%20standard.-,RFC%20896%20Congestion%20Control%20in%20
IP%2FTCP%20Internetworks%201%2F6,window%20size%20has%20been%20reduced

46 Volume 8; Issue 2

[7]	 Afanasyev A, Tilley N, Reiher P, 2010, Host-to-Host Congestion Control for TCP. IEEE Communications Surveys &
Tutorials, 12(3): 304‒342, .

[8]	 Jacobson V, Karels MJ, 1988, Symposium Proceedings on Communications Architectures and Protocols, August
16–18, 1988: Congestion Avoidance and Control. Stanford, 314‒329.

[9]	 Zoom, n.d., https://zoom.us/signin
[10]	 Microsoft Teams, n.d., https://www.microsoft.com/ja-jp/microsoft- teams/log-in
[11]	 Gettys J, 2011, Bufferbloat: Dark Buffers in the Internet. IEEE Internet Computing, 15(3): 96.
[12]	 Mininet: An Instant Virtual Network on Your Laptop (or Other PC), 2022, http://mininet.org/
[13]	 Allman M, Paxson V, Stevens W, 1999, TCP Congestion Control (RFC5681), IETF Datatracker, https://datatracker.

ietf.org/doc/html/rfc5681
[14]	 Henderson T, Floyd S, Gurtov A, et al., 2012, The NewReno Modification to TCP’s Fast Recovery Algorithm (RFC

6582), IETF Datatracker, https://datatracker.ietf.org/doc/rfc6582/
[15]	 Ha S, Rhee I, Xu L, 2008, CUBIC: A New TCP-Friendly High-Speed TCP Variant. ACM SIGOPS Operating

Systems Review, 42(5): 64‒74.
[16]	 Hock M, Bless R, Zitterbart M, 2017, 2017 IEEE 25th International Conference on Network Protocols (ICNP),

October 10–13, 2017: Experimental Evaluation of BBR Congestion Control, 1‒10
[17]	 Arun V, Balakrishnan H, 2018, Proceedings of the 15th USENIX Symposium on Networked Systems Design and

Implementation (NSDI ’18), April 9–11, 2018: Copa: Practical Delay-Based Congestion Control for the Internet.
Renton, 329‒342.

[18]	 Kleinrock L, 1975, Queueing Systems Volume 1: Theory, Wiley-Interscience, New York.
[19]	 Narayan A, Cangialosi F, Raghavan D, et al., 2018, Proceedings of the 2018 Conference of the ACM Special Interest

Group on Data Communication, August 20–25, 2018: Restructuring Endpoint Congestion Control. Budapest, 30‒43.
[20]	 Facebook’s QUIC Implementation, https://github.com/facebookincubator/mvfst, 2022.
[21]	 Iyengar J, Thomson M, 2021, QUIC: A UDP-Based Multiplexed and Secure Transport (RFC 9000), Datatracker,

https://datatracker.ietf.org/doc/rfc9000/
[22]	 Kohler E, Handley M, Floyd S, 2006, Datagram Congestion Control Protocol (DCCP) (RFC4340), Datatracker,

https://datatracker.ietf.org/doc/html/rfc4340
[23]	 Jain R, Durresi A, Babic G, 1999, Throughput Fairness Index: An Explanation, https://www.cse.wustl.edu/~jain/atmf/

ftp/atm99-0045.pdf
[24]	 Ware R, Mukerjee MK, Seshan S, et al., 2019, HotNets ‘19: Proceedings of the 18th ACM Workshop on Hot

Topics in Networks, November 13–15, 2019: Beyond Jain’s Fairness Index: Setting the Bar for the Deployment of
Congestion Control Algorithms. New York, 17‒24.

[25]	 Utsumi T, 2022, Congestion Control Algorithm and Fairness (or Affinity) with Analytical Model, Technical Report,
NS2022-23, 1–5.

[26]	 Kleinrock L, 2018, Internet Congestion Control Using the Power Metric: Keep the Pipe Just Full, But No Fuller. Ad
Hoc Networks, 80: 142‒157.

[27]	 Adams R, 2012, Active Queue Management: A Survey. IEEE Communications Surveys & Tutorials, 15(3):
1425‒1476.

[28]	 Nichols K, Jacobson V, McGregor A, et al., 2018, Controlled Delay Active Queue Management (RFC 8289),
Datatracker, https://datatracker.ietf.org/doc/html/rfc8289

[29]	 Floyd S, 1994, TCP and Explicit Congestion Notification. ACM SIGCOMM Computer Communication Review,
24(5): 8‒23.

[30]	 The Network Simulator-ns-2, n.d., https://www.isi.edu/nsnam/ns/

47 Volume 8; Issue 2

[31]	 ns-3 Network Simulator, n.d., https://www.nsnam.org/
[32]	 Rizzo L, 1997, Dummynet: A Simple Approach to the Evaluation of Network Protocols. ACM SIGCOMM Computer

Communication Review, 27(1): 31‒41.
[33]	 tc(8) - Linux Man Page, n.d., https://linux.die.net/man/8/tc
[34]	 Netravali R, Sivaraman A, Winstein K, et al., 2014, Mahimahi: A Lightweight Toolkit for Reproducible Web

Measurement, ACM SIGCOMM Computer Communication Review, 44(4): 129‒130.
[35]	 iPerf - The Ultimate Speed Test Tool for TCP, UDP and SCTP, n.d., https://iperf.fr/
[36]	 Public iPerf3 Servers, n.d., https://iperf.fr/iperf-servers.php
[37]	 Amazon EC2, n.d., https://aws.amazon.com/jp/ec2/
[38]	 Floyd S, Handley M, Padhye J, et al., 2000, Equation-Based Congestion Control for Unicast Applications. ACM

SIGCOMM Computer Communication Review, 30(4): 43‒56.
[39]	 Utsumi S, Hasegawa G, 2022, 2022 IFIP Networking Conference (IFIP Networking), June 13–16, 2022: Improving

Inter-Protocol Fairness Based on Estimated Behavior of Competing Flows. Catania, 1‒9.
[40]	 Mishra A, Sun X, Jain A, et al., 2020, The Great Internet TCP Congestion Control Census. Proceedings of the ACM

on Measurement and Analysis of Computing Systems, 3(3): 45.
[41]	 Winstein K, Balakrishnan H, 2013, TCP ex Machina: Computer-Generated Congestion Control. ACM SIGCOMM

Computer Communication Review, 43(4): 123‒134.
[42]	 Dong M, Li Q, Zarchy D, et al., 2015, Proceedings of the 12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’15), May 4–6: PCC: Re-Architecting Congestion Control for Consistent High
Performance. Oakland, 395‒408.

[43]	 Dong M, Meng T, Zarchy D, et al., 2018, Proceedings of the 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’18), April 9–11: PCC Vivace: Online-Learning Congestion Control. Renton,
343‒356.

[44]	 Jay N, Rotman N, Godfrey B, et al., 2019, A Deep Reinforcement Learning Perspective on Internet Congestion
Control. Proceedings of the 36th International Conference on Machine Learning, 3050‒3059.

[45]	 Fang J, Ellis M, Li B, et al., 2019, Reinforcement Learning for Bandwidth Estimation and Congestion Control in
Real-Time Communications. arXiv. https://doi.org/10.48550/arXiv.1912.02222

[46]	 Sivakumar V, Delalleau O, Rocktäschel T, et al., 2019, MVFST-RL: An Asynchronous RL Framework for Congestion
Control with Delayed Actions. arXiv. https://doi.org/10.48550/arXiv.1910.04054

[47]	 Emara S, Li B, Chen Y, 2020, IEEE INFOCOM 2020 – IEEE Conference on Computer Communications, July 2020:
Eagle: Refining Congestion Control by Learning from the Experts, 676‒685.

[48]	 Abbasloo S, Yen CY, Chao HJ, 2020, Proceedings of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication,
August 10–14, 2020: Classic Meets Modern: A Pragmatic Learning-Based Congestion Control for the Internet,
632‒647.

[49]	 Philip AA, Ware R, Athapathu R, et al., 2021, Proceedings of the 21st ACM Internet Measurement Conference,
November 2–4, 2021: Revisiting TCP Congestion Control Throughput Models & Fairness Properties at Scale.
Virtual, 96‒103.

[50]	 Ferreira M, Narayan A, Lynce I, et al., 2021, Proceedings of the 20th ACM Workshop on Hot Topics in Networks,
November 10–12, 2021: Counterfeiting Congestion Control Algorithms. United Kingdom, 132‒139.

[51]	 Ware R, Mukerjee MK, Seshan S, et al., 2019, Proceedings of the Internet Measurement Conference, October 21–23,
Amsterdam: Modeling BBR’s Interactions with Loss-Based Congestion Control, 137‒143.

[52]	 Goyal P, Narayan A, Cangialosi F, et al., 2022, Proceedings of the ACM SIGCOMM 2022 Conference, August 22–

48 Volume 8; Issue 2

26: Elasticity Detection: A Building Block for Internet Congestion Control. Amsterdam, 158–176.
[53]	 Hasegawa G, Murata M, Miyahara H, 1999, 18th IEEE Annual Joint Conference, March 21–25, 1999: INFOCOM,

IEEE Computer and Communications Societies: Fairness and Stability of congestion Control Mechanisms of TCP.
New York, 1329–1336.

[54]	 Hasegawa G, Kurata K, Murata M, 2000, Proceedings 2000 International Conference on Network Protocols,
November 14–17, 2000: Analysis and Improvement of Fairness Between TCP Reno and Vegas for Deployment of
TCP Vegas to the Internet. Osaka, 177‒186.

[55]	 Goyal P, Agarwal A, Netravali R, et al., 2020, Proceedings of the 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’20), February 25–27: ABC: A Simple Explicit Congestion Controller for
Wireless Networks. Santa Clara, 353‒372.

[56]	 Katabi D, Handley M, Rohrs C, 2002, Proceedings of the 2002 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, August 19–23: Congestion Control for High Bandwidth-
Delay Product Networks. Pittsburgh, 89‒102.

[57]	 Tai C-H, Zhu J, Dukkipati N, 2008, The 27th Conference on Computer Communications, April 13–18, 2008: Making
Largescale Deployment of RCP Practical for Real Networks. Pheonix, 2180‒2188.

[58]	 Yan FY, Ma J, Hill GD, et al., 2018, 2018 USENIX Annual Technical Conference (USENIX ATC’18), July 11–13,
2018: Pantheon: The Training Ground for Internet Congestion Control Research, 731‒743.

[59]	 Arun V, Alizadeh M, Balakrishnan H, 2022, Proceedings of the ACM SIGCOMM 2022 Conference, August 22–26,
2022: Starvation in End-To-End Congestion Control. 177–192

[60]	 Public-iPerf3-Serverlist, https://github.com/R0GGER/public-iperf3-servers

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

