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Abstract: Multimodal named entity recognition (MNER) and relation extraction (MRE) are key in social media analysis
but face challenges like inefficient visual processing and non-optimal modality interaction. (1) Heavy visual embedding:
the process of visual embedding is both time and computationally expensive due to the prerequisite extraction of explicit
visual cues from the original image before input into the multimodal model. Consequently, these approaches cannot
achieve efficient online reasoning; (2) suboptimal interaction handling: the prevalent method of managing interaction
between different modalities typically relies on the alternation of self-attention and cross-attention mechanisms or
excessive dependence on the gating mechanism. This explicit modeling method may fail to capture some nuanced relations
between image and text, ultimately undermining the model’s capability to extract optimal information. To address these
challenges, we introduce Implicit Modality Mining (IMM), a novel end-to-end framework for fine-grained image-text
correlation without heavy visual embedders. IMM uses an Implicit Semantic Alignment module with a Transformer for
cross-modal clues and an Insert-Activation module to effectively utilize these clues. Our approach achieves state-of-the-art

performance on three datasets.
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1. Introduction

In recent years, social media platforms have seen an increase in user-generated tweets related to events,

opinions, preferences, etc !"’. The booming status quo has also created an emerging need to extract structured

) [2-4]

information from the massive volume of tweets. Named entity identification (NER and relationship

) " are two critical tasks in these rich applications.

extraction (RE
Numerous studies have been done on text-based NER and RE tasks . However, in social media scenarios,
the form of post content is not only limited to textual modality but also other modalities like images. In this

case, information extraction methods that rely solely on text-based models may not be able to extract accurate
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information. As shown in Figure 1, the text-based named entity recognition model may label bulls as MISC, not
ORG, and the text-based relation extraction model cannot determine that Deion Jones and Kwon Alexande Jr are
peers. Therefore, multimodal information extraction tasks, especially multimodal named entity recognition (MNER)
and multimodal relationship extraction (MNRE), are proposed. Zhang et al. ™ proposed a co-attention network to

L " are the

adaptively control and combine text representation with image representation for MNER. Yu et a
first to apply a unified Transformer structure for the interaction of multimodal information while using a module
with auxiliary entity span detection (ESD) to reduce the influence of noisy entities. Ren et al. "' proposed
a visual prefix-guided approach to unite text and vision to generate more efficient and robust multimodal

representations.

Figure 1. Two examples of multimodal information extraction tasks. (a) MNER with entity label ORG, (b)
Multimodal relation extraction with relation peer.

The key to MNER and MNRE tasks is how to effectively incorporate evident visual information to improve
textual semantics for NER and NRE tasks. To accomplish this, there are two crucial processes in current state-
of-the-art methods. One is the processing of image features, while the other is the interactive mechanism of
different modalities. The processing of image features is mainly performed by using a visual grounding toolkit

to obtain explicit visual clues like targeted visual objects ">,

Then, these visual objects along with the
original image are transformed into visual embedding, mainly by using convolutional architectures such as
ResNet ' or a linear embedding layer like Vision Transformers (ViT) . These visual embeddings serve as the
output visual representation, facilitating subsequent interactions. This image feature processing is utilized by

current state-of-the-art methods *'*"”

. Regarding modality interaction methods, there is no standard approach.
Typically, this involves a combination of self-attention and cross-attention, or sometimes an excessive reliance
on the gating mechanism.

Recent studies have demonstrated notable improvements over unimodal models in processing image
features and interactive mechanisms, primarily through the adoption of methods such as self-attention and
cross-attention. However, despite these advancements, two significant limitations remain unresolved. Firstly,
the process of acquiring explicit visual clues via a visual grounding toolkit is burdensome in terms of both time
and computational resources. This complexity arises from various components in the pipeline, including the
CNN backbone, a region proposal network (RPN), non-maximum suppression (NMS), and region of interest
(ROI) head, all of which contribute to increased runtime and computational demands. In academic experiments,
the drawbacks associated with using a heavy visual embedder are often overlooked. This is because the
acquired visual clues are commonly pre-cached during training to alleviate the computational burden of image
feature extraction, rendering them inefficient for real-time reasoning. Additionally, the handling of interactions
between different modalities is suboptimal, as it typically relies on alternating self-attention and cross-attention
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mechanisms or an excessive dependence on gating mechanisms to leverage explicit visual clues. This approach
tends to overly focus on specific visual cues, leading to the misidentification of non-entity clues as entities in
images. Consequently, this explicit modeling method may fail to capture nuanced relations between image and
text, thereby compromising the model’s ability to extract optimal information.

To address the aforementioned challenges, we introduce the Implicit Modality Interaction (IMM)
framework. This framework operates solely on the original image, extracting visual embeddings through
a linear projection of its patches, thus eliminating the need for a heavy visual grounding toolkit to obtain
explicit visual clues. Instead, IMM implicitly captures nuanced relations between image and text, enhancing
textual semantics effectively. Specifically, we employ a simple projection of image patches for input, ensuring
runtime and parameter efficiency. To facilitate superior interaction in the absence of explicit visual clues, we
introduce several modules in our architecture. First is the Implicit Semantic Alignment (ISA) module, which
utilizes a Transformer network for modality interactions, incorporating layers of Layer Normalization (LN) """
Additionally, we propose a Semantic-Wise (SW) loss, leveraging pseudo-supervised signals from CLIP ", to
align and mine finer-grained information. Furthermore, inspired by prior work ** suggesting that Knowledge
neurons in a feedforward network (FFN) express factual knowledge, we introduce the Insert-Activation (IA)
module. IA treats visual clues as knowledge to be activated in FFN, thereby effectively utilizing potentially
valid information from the ISA module to enhance textual semantics. In summary, the primary contributions of
this paper are as follows:

(1) To the best of our knowledge, our IMM is the first to utilize only linear projection of patches of the
original image as visual embedding without any assistance of visual grounding toolkits. This end-
to-end design inherently leads to significant runtime and parameter efficiency compared to previous
works.

(2) We introduce the ISA module, designed to uncover valuable clues between visual and textual inputs
without the need for explicit extraction of visual cues. ISA aims to implicitly mine these cues,
enhancing interaction between modalities. Additionally, we propose the IA module, which effectively
harnesses the potentially relevant information identified by ISA.

(3) Our experiments, conducted on widely used MNER and MRE datasets, demonstrate that our method
achieves new state-of-the-art performance levels. Furthermore, we supplement our findings with
ablation studies and case studies, showcasing the pivotal roles played by both the ISA module and the
IA module within our framework.

2. Related work

2.1. Multimodal entity and relation extraction
Named entity recognition (NER) and relation extraction (RE) have garnered a lot of interest in the academic
community as they are crucial components of information extraction. Early research often involved feature
engineering and the utilization of various linear classifiers, including Support Vector Machines (SVM),
maximum entropy models, and Conditional Random Fields (CRF) *"*> However, in recent years, deep
learning approaches have shown promising results for NER and RE tasks, employing architectures such as
Convolutional Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs), and Transformer
models ¥ 7%, Influenced by the demand for information extraction in realistic social media scenarios, many
researchers have focused on multi-modal NER and RE.

In initial works addressing MNER, the primary approach involves encoding text using LSTMs and images
using pre-trained CNNs, followed by implicit interaction between the representations of the two modalities.
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This methodology has been explored by various researchers. Similarly, in the MRE task, motivated by the
challenges observed in MNER, Zheng et al. * were among the first to propose this task. They demonstrated
that traditional text-based RE models perform poorly when applied to social media texts, highlighting the
potential benefits of incorporating visual information. Following this, Chen et al. " utilized graph structure
information to align relations between entities in text and images, leveraging image data to supplement missing
semantic information. In the current state-of-the-art approaches, both MNER and MRE tasks commonly employ

the Transformer Architecture along with visual grounding toolkit methods. Xu et al. "

adopted a strategy where
they extract multiple regions from images and utilize a CNN backbone to represent these regions, establishing
relationships between image regions and each word in the text. Yu et al. "” introduced a unified Transformer
structure for multimodal information interaction, incorporating a module with auxiliary entity span detection
(ESD) to mitigate the impact of noisy entities. Devlin et al. ** proposed an alignment and matching framework
that employs contrastive learning to enhance the consistency between text and image representations. Chen et
al. """ proposed a visual prefix-guided approach to unite text and vision to generate more efficient and robust
multimodal representations. Building upon this foundation, we introduce a novel architecture incorporating
several essential modules designed to implicitly interact between modalities and extract valuable information

for both MNER and MRE tasks.

2.2. Vision-and-language pre-training

Influenced by the success of BERT ) there has been a growing trend in multimodal research towards Vision-
and-Language Pre-training (VLP) on BERT, leading to significant improvements in various downstream
multimodal tasks such as visual question answering and image captioning. VLP can be characterized in terms
of architecture and pretraining tasks. Architecturally, it can be divided into single-stream structures, including
VisualBERT ¥, Unicoder-VL "%, VL-BERT "%, and UNITER "7, where patches of image and tokens of text
are combined into a sequence and fed into BERT style model to learn contextual embeddings. Alternatively,
two-stream structures like LXMERT " and ViLBERT " process visual and language inputs separately, with
interactions facilitated through co-attention or merged attention transformer layers. In terms of pretraining
tasks, common approaches include image-text matching (ITM), masked language modeling (MLM), image-
text contrastive learning (ITC), and masked region classification (MRC). While these multimodal models
have shown consistent improvement in tasks such as image-text retrieval and visual question answering,
their application to MNER and MRE may not yield optimal performance. This is because they are typically

[40-43]

pretrained on datasets of image captions , which may not be directly relevant to the objectives of MNER

and MRE. We performed several experiments to validate this observation.

3. Methodology
3.1. Overview

In this section, we present a comprehensive overview of our IMM framework designed for multimodal
information extraction tasks, as depicted in Figure 2. We begin by introducing the ISA module in Section 3.2.
This module comprised Transformer layers, denoted as LVT layers, shared between the visual and textual sides
while maintaining distinct feed-forward layers for each modality. Additionally, we incorporated the CLIP-
guided alignment module SW within ISA. Moving forward, in Section 3.3., we detail the IA module. This
module consisted of Transformer layers, denoted as LIA layers, featuring separate pathways for visual and
textual inputs. Specifically, IA inserts visual representations into the feed-forward layers of the textual pathway,
facilitating enhanced integration of visual information with textual semantics.
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3.2. Implicit semantic alignment module
3.2.1. Embedding

As shown in Figure 2, the input consisted of image-text pairings that provided the appearance characteristics
of entity and relations from both the visual and textual modalities. We denoted the text input as t = (cls, sy, ..

s, sep), where s, to s, represent the token sequence of the input sentence both for sentence-level and word-

level. We projected words into token vectors using the pretrained word embedding alignment with transformers

architecture "

Tr= [tclss tla RS tm Z‘sep ] + Toos T, (1)

pos pype

where ¢, and ., denoted the start and end tokens, » indicates the length of tokenized subword units, 7, is

pos

the position embedding, and T, was the type embedding.

ype
Following the architecture of ViT "%, for the input, where the resolution of the input image is H x W and
C was the number of channels, it is firstly split into m = H - W/P’ patches, where P denoted the patch size, and

then linearly projected into patch embeddings :

V: [vclsa Vis ves Vi vsep ] + V +V (2)

pos pype

where v, denoted the start token, M indicated the number of patches, V., was the position embedding, and

Ve Was the type embedding.
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Figure 2. Overall framework of IMM. (1) ISA featuring LVT layers of Transformer shared between the visual and textual
sides while retaining respective feedforward layers, along with the CLIP-guided alignment module SW. (2) IA module
incorporating LIA layers of Transformer with separate pathways for visual and textual inputs.
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3.2.2. Visual-text transformer architecture

Many existing approaches in multimodal information extraction rely on separate models, which have
demonstrated effectiveness when utilizing explicit visual clues. However, in our approach, which avoids heavy
visual embedding, the absence of cross-modal interactions results in a failure to capture nuanced relations
between image and text, thereby undermining the model’s ability to extract optimal information. To address
this limitation, we introduce the ISA Module, which enhances cross-modal interactions to implicitly capture
valuable clues between visual and text inputs.

As depicted in Figure 2, the architecture consisted of stacked L, blocks of Transformer. Within each
block, the two modalities share LN and multi-head attention (MHA), facilitating the learning of common spatial
mappings between visual and textual modalities. This sharing of parameters aids in understanding the common
statistical characteristics of the data. For instance, while LN computes the mean and standard deviation of the
input token embeddings, shared LN learns statistically common values across both modalities. From a data-
level perspective, this unified cross-modal interaction facilitates the extraction of key information. However,
recognizing that visual and textual modalities are inherently different, each block incorporates modality-specific
feed-forward layers, denoted as V-FFN and T-FFN modules in Figure 2. The processing within each block can
be summarized as follows:

B = MHA (LN () + 3)

P =

h/'=V/T—FFN (LN (h"))+h/ 4)

Through L, layers of Visual-text Transformer Architecture, the model learns a common spatial mapping
between the two modalities while preserving their independent characteristics. To enable the model to extract
finer-grained information, we facilitated the implicit and automatic mining of valuable information by aligning
vision and language at different levels. Specifically, we leveraged CLIP ") a state-of-the-art multimodal vision
and language model comprising a Vision Encoder and a Text Encoder, to obtain vision representations ¥, and
text representations 7.. Exploiting CLIP’s ability to provide signals of image-text similarity, we derived a
pseudo-supervised signal P representing the degree of similarity between image-text pairs for alignment:

P =max (0, f(T,, V.)) (5)

where f denoted the cosine similarity function. V, denoted vision representations and 7, denoted text
representations at sentence-level. On the interactive side, we simultaneously obtained inputs at both the
sentence-level and word-level, with corresponding images being subjected to data augmentation. Inspired
by Geva et al. ", we employed the pseudo-supervised signal provided by CLIP to enable the model to gain
valuable matching information. By aligning these two different input dimensions, we intended to enable the
model to automatically and implicitly mine more precise relations between vision and text at both the sentence-
level and word-level. The process is summarized as follows:

_ 1aB B Pij
Ly = Ezi=1 =1 (pf,] ' 1Og qij i e) (6)
o _ e R
L ™
P :
Ny LJ
.= — 8
q;; S Pux (®)
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where s denoted sentence-level in all equations, 7;; denoted the matching probability, 4° and %;" were the
output of Ly,th layers, B was the mini-batch size, ¢;; denoted the normalized “true” matching probability. P
was defined through Equation 5, with € being a small number to avoid numerical problems. Through the loss
L, we could get some image-text matching information in the output of respective FFN layers. Moreover, to
enable the model to automatically and implicitly mine more precise relations between vision and text, we
further introduced word-level processing to align the pseudo-supervised signals brought by the sentence-level,
intending to extract fine-grained matching information between vision and text. The process is described as

follows:
Lo = 232 3 (Y log L) ©
w p&i=14j=1 \'L] q+e
wo_ exp(hfw-h}m) (10)
pi'j - Efﬂexp(hfw-hzw)
q; = 4, (11)

where w denotes word-level in all equations. ¢, is defined in Equation 8.
The KL divergence from distribution q top is represented by L, and L,. We computed the loss in two
directions, i.e., image-to-text and text-to-image, in accordance with prior work **. The entire loss is indicated

as follows:
Is = (L2 + L7) 1)
Ly = (L& + L) (13)
Ly, = alLs + BLy (14)

where a and £ are the hyperparameters.

3.3. IA module

By aligning the modal representations and automatically mining implicit information, the ISA module enables
us to generate outputs that are rich in information and can be utilized as inputs by the IA module. In this section,
we introduce 1A, which treats the visual clues as knowledge to be activated in the FFN. This effectively utilizes
the potentially valid information brought by the ISA module to enhance textual semantics.

......... . U — \

Insert Activation .

: FFN = Activation-FFN |

Layer Norm Layer Norm
D D

Figure 3. Detailed IA module, which threatens the ? ? ‘f' ? ? \T'
visual clues as the knowledge to be activated in FFN, Layer Norm Layer Norm
that effectively utilizes the potentially valid information

brought by ISA module to improve textual semantics.
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3.3.1. Insert activation
Previous research “”has noted that FFN can be thought of as unnormalized key-value memories and emulates
brain memory. Specifically, the FFN contained in each layer of the Transformer consists of two linear networks.

Through a new perspective, the FFN’s computation could be formulated as follows:
FFN (h)=f(h+-K") -V (15)

where h €R? denoted the output of MHA. K, VE R were the parameter matrices of the two linear
networks, / denoted the activated function like Leaky ReLU *; bias terms were ignored. In addition, Wu et al. ¥’
introduced the concept of knowledge-edge neurons, providing initial investigations into how factual knowledge is
stored in pre-trained Transformers. More recently, Yao et al. ™ successfully utilized knowledge contained in pre-
trained language models (PTMs) and external knowledge by transforming it into dense embedding vectors through
a knowledge encoder and injecting it into the FFN of the Transformer. Drawing inspiration from this, we consider
the hidden embeddings of the visual part as additional knowledge inserted into the text part of the network, to be
activated. However, since it has been mentioned earlier that most image regions and text tokens are irrelevant, the
information from some images may introduce noise to textual semantics. Therefore, we need to preprocess the
inserted neural knowledge to mitigate this issue. Leveraging the output of the ISA module, which contains fine-
grained matching information, we conducted token-wise cross-modal interaction as the preprocess of inserted
neural knowledge before activation operation. Specifically, we denoted h" €R"*“and h' € R"* as the inputs of
respective FFN, where m and n denoted sequence length of the visual vectors and textual vectors respectively.
We computed the similarity matrix, as shown in Equation 16.

S=n(n) (16)
Based on Equation 9, the knowledge embeddings were obtained as follows:

Sele, (") = softmax(S,)h" (17)
k"= [Sele, (x");...; Sele,(x")] (18)

where Agg, denoted the similarity-aware selected visual representation for i textual token. denoted the
inserted neural knowledge, which would be projected by , for being mapped to the corresponding vector space.

bu=K - W, (19)
¢iv = k" : Wv (20)
Activation — FFN (h) =f(h; - [@K]) -+ [Pu:V; ] 21

In Equation 19, i denotes the i” blocks in IA Module, in which the total number of its blocks are L,, as
shown in Figure 2.

3.4. Classifier

3.4.1. NER head

To increase model capacity and interaction frequency, we stacked layers of the L, IA module to form a
cascaded architecture. Ultimately, we considered only the word representations of the encoding output, denoted
as H,, ER", which were then fed into the decoding layer for sequence labeling. Recognizing the dependencies
between successive labels, we jointly modeled the hidden representations using a standard CRF layer. Denoting
Y’ as the set of all possible label sequences for the input sentence X, the probability of the label sequence Y
could be calculated using Equation 22.
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_ [T vii-vyuHw) (22)
Y|H,) = —
p( | W) ny'ey' vazl Yi(vic1yotw)

where ¥a0i-1, ¥ Hw) = exp WereHu + bary) Tepresents the scoring function, and W,,, and b,,, are the weight vector
and bias. The objective of NER is defined as follows:

Lyer = — X log(p(y® | £(x))) 23)

3.4.2. RE head

The goal of RE head was to predict the relation R € Y between subject entity and object entity. Specifically, a
[CLS] head was utilized to compute the probability distribution over the class set ¥ with the softmax function
pPR|X = softmaX(WHL[CLS]), and the parameters of L and W were fine-tuned by minimizing the cross-entropy
loss over p(R | X) on the entire X, as shown in Equation 24.

Le = =X log(p(RY | x)) 24)
IMM was trained by minimizing loss L, or L, as follows:

Lygg = ¥Lgy+9L,, (25)

Lgg = yLgy+8L,, (26)

where y and ¢ were hyperparameters.

4. Experiments and discussion

This section describes our IMM in MNER and MRE experimental settings. Results obtained on three datasets
demonstrate that our IMM framework outperforms other baselines, including both unimodal and multimodal

approaches.

4.1. Datasets

For MNER, we conducted experiments on two publicly available Twitter datasets: Twitter-2015 ' and
Twitter-2017 *”. For MRE, we evaluated our approach on the MNRE dataset *!, which is a manually-labeled

dataset specifically curated from Twitter for multimodal relation extraction tasks.

4.2. Metrics

Aligning with other works
performance of MNER and MRE.

510459 " we used F1 score (F1), precision (P), and recall (R) to evaluate the

4.3. Compared baseline

To show the superiority of our IMM, we conducted a comprehensive comparison with several baseline models.

Firstly, to illustrate the improvement achieved by incorporating visual information, we compared IMM with

traditional text-based models. Secondly, we contrasted IMM with multimodal models, which are pre-trained

visual-language models and exhibit either a single-stream or two-stream structure. Additionally, we further

considered another group of previous state-of-the-art multimodal approaches for both MNER and MRE tasks.
MNER baselines contain the following approaches: (1) BILSTM-CRF ™ utilizes word- and character-level
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representations via BILSTM and CNN for NER; (2) CNN-NER “is a Twitter-specific NER system with various
features to boost performance; (3) AdapCoAtt-BERT-CRF ! designs an adaptive co-attention network to induce
word aware visual representations for each word; (4) UMT """ extends the Transformer to a multi-modal version
and incorporates the auxiliary entity span detection module; (5) UMGF ©”, allows a unified multimodal graph
fusion approach for MNER and achieves the newest SOTA for MNER.

The MRE baselines involve the following approaches: (1) PCNN P! uses convolutional networks with

piecewise pooling; (2) MTB *? is a RE-oriented pre-training model based on BERT; (3) Chen et al.

proposed
BERT+SG for MRE, which concatenate the textual representation from BERT with visual features generated
with scene graph (SG); (4) MEGA " designs the dual graph alignment of the correlation between entities and
objects; 5) MKGformer "7 presents a hybrid Transformer network for multimodal tasks, which is the newest

state-of-art for MRE.

4.4. Overall performance
Table 1 and Table 2 show the final model performances upon MNER and MRE. From the experimental results,
the following observations were obtained:

(1) Performances are indeed improved by visual information. We found that previous multimodal
approaches could achieve better performance, the enormous improvement of F1 score for NER was
about 1.7% (comparing UMT with BERT-CRF) and about 5.55% for RE (comparing MEGA with
MTB). Hence by comparing the previous state-of-art multimodal techniques with their respective text-
based baselines, we can conclude that the visual elements are generally beneficial for MNER and MRE
tasks.

(2) Pre-trained multimodal models hold poor performance. To further perform comparative tests, we altered
the standard pre-trained vision-language model Visual BERT and VILBERT with [CLS] classifier for
the MRE task and CRF classifier for the MNER task. We noticed that VisualBERT and VILBERT
performed worse than our method and previous state-of-art multimodal approaches. Upon analysis,
the pre-trained datasets and objects contained gaps in information extraction tasks, which could be the
cause of the pre-trained multimodal poor performance.

(3) Our proposed IMM achieves the best results upon two tasks. Our results (Table 1) showed that our
IMM outperformed the most recent SOTA model, MKGformer, which enhance F1 scores by 0.69%
for the Twitter-2015 dataset and 1.06% for the MNRE dataset. These results indicate that our method
can achieve the best performance by utilizing only linear projection of patches of the original image as
visual embedding without any assistance of visual grounding toolkit, and this end-to-end design indeed

leads to significant runtime and parameter efficiency compared to previous works.

Table 1. Overall performance comparison of the different competitive baseline approaches for MRE

MNRE Twitter-2015 Twitter-2017
Modality Methods
Precision Recall F1 Precision Recall F1 Precision Recall F1

BiLSTM-CRF - - - 66.24 68.09 67.15 80.00 78.76  79.37
CNN-NER - - - 70.32 68.05 69.17 82.69 78.16 80.37
Text BERT-CRF - - - 69.22 74.59 71.81 83.32 83.57 83.44

PCNN 62.85 49.69 55.49 - - - - - -

MTB 64.46 57.81 60.86 - - - - - -
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Table 1 (Continued)

MNRE Twitter-2015 Twitter-2017
Modality Methods
Precision Recall F1 Precision Recall F1 Precision Recall F1
AdapCoAtt-BERT-CRF - - - 69.87 74.59 72.15 85.13 83.20 84.10
UMT 62.93 63.88  63.46 71.67 7523 7341 85.28 8534 85.31
BERT+SG 62.95 62.65  62.80 73.71 71.21  72.92 84.13 83.88 84.00
Text + Image MEGA 64.51 68.44  66.41 70.35 74.58 7235 84.03 84.75 84.39
VisualBERT 57.15 59.48  58.30 68.84 71.39  70.09 84.06 8539 85.04
VIiLBERT 64.50 61.86  63.16 68.23 70.45 69.32 84.62 85.47 85.04
MKGformer 82.67 81.25  81.95 73.87 76.82 75.32 86.98 88.01 87.49
IMM 82.58 83.45  83.01 74.51 77.69 76.01 87.33 87.91 87.62

Table 2. Overall performance comparison of the different competitive baseline approaches for MNRE

MNRE
Modality Methods
Precision Recall F1

BiLSTM-CRF - - -

CNN-NER - - -

Text BERT-CRF - - -
PCNN 62.85 49.69 55.49
MTB 64.46 57.81 60.86

Text + Image AdapCoAtt-BERT-CRF - - -
UMT 62.93 63.88 63.46
BERT+SG 62.95 62.65 62.80
MEGA 64.51 68.44 66.41
VisualBERT 57.15 59.48 58.30
VILBERT 64.50 61.86 63.16
MKGformer 82.67 81.25 81.95
IMM 82.58 83.45 83.01

4.5. Ablation study

We further conducted an ablation study to prove the effect of different modules in our IMM. (1) w/o SW
refers to the model without the assistance of CLIP for implicit alignment of vision and language at various
levels; (2) w/o IA refers to the model without the IA module; 3) w/o SW and /4 refers to the model without
either of the two modules. Figure 4 presents the comprehensive experimental data. Notably, the ablation
models exhibited a decline in performance, indicating the efficacy of individual elements in our
methodology. The following observations were made:
(1) The eftectiveness of SW or IA. The SW module and IA module are core components within our IMM
framework. The SW module serves as a pluggable operation that harnesses pseudo-supervised signals
through CLIP. As evidenced by the experimental results depicted in Figure 4, this operation proves to
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be effective in providing a priori signaling. On the other hand, the IA module aims to efficiently utilize
potentially valid information brought by downstream modules to enhance textual semantics. Similarly,
the experimental findings shown in Figure 4 validate the effectiveness of this approach in leveraging
information from downstream modules.

(2) The necessity of combining SW and IA. aims to design an end-to-end structure that inherently achieves
significant runtime and parameter efficiency compared to previous works. It is the first to utilize only
linear projection of patches of the original image as visual embedding without the assistance of a visual
grounding toolkit. To achieve this, we first proposed the ISA module with SW to compensate for the
absence of a visual grounding toolkit. Subsequently, to further leverage the information brought by
downstream modules, we introduced the IA module. Ultimately, our experimental results demonstrate

the effectiveness of the combination of SW and IA in enhancing the performance of our framework.
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Figure 4. Ablation study results of our IMM

4.6. Cross-task scenario

Table 3 presents a performance comparison between our proposed method, IMM, and previous approaches
in a cross-task scenario to analyze its versatility. In the first section, “Twitter-2017 — MNRE” indicates that
the model trained on Twitter-2017 is subsequently employed for training and testing on the MNRE dataset.
Conversely, in the second section, “MNRE — Twitter-2017”” denotes the utilization of the MNRE-trained model
for further training and evaluation on Twitter-2017. From the results tabulated in this table, it is evident that our
IMM significantly outperforms other methods by a considerable margin. This suggests that our approach can
achieve further improvement in cross-task settings, demonstrating the effectiveness of a unified task framework.
In contrast, methods such as UMGF exhibit inferior performance compared to their previous results on the
respective datasets. Moreover, when compared to the recent HVPNeT method, our IMM achieves even greater
enhancement. These findings underscore the high potential of our IMM in cross-task scenarios and validate the
efficacy of a unified task framework. Therefore, leveraging more image-text data could facilitate the learning of
better modality fusion parameters. Furthermore, extending our work to multi-task learning or multi-modal pre-
training represents promising research directions for future exploration.
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Table 3. Performance comparison of our IMM and others in cross-task scenario

Methods Twitter-2017 — MNRE MNRE — Twitter-2017
UMGF 63.85 — 62.90] (0.95) 85.51 — 84.35] (1.16)
HYPNeT 81.85 — 82.501 (0.75) 86.87 — 87.311 (0.26)
IMM 83.01 — 83.807 (0.79) 87.62 — 87.941 (0.32)

5. Conclusion

In this paper, we introduced a novel end-to-end approach, the IMM, designed for MNER and MRE. Specifically,
we proposed an ISA module to implicitly mine valuable clues between visual and text modalities instead of
explicitly obtaining visual clues. Additionally, we introduce the IA module to effectively utilize potentially valid
information brought by ISA, facilitating superior interaction even with a simple visual embedder and enhancing
the incorporation of visual information to improve textual semantics. Extensive experiments conducted on
widely used MNER and MRE datasets demonstrate that our method achieves new state-of-the-art performance.
In the future, for broader multimedia analysis, we aim to adapt our IMM framework to various multimodal
tasks.
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