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Abstract: The progress in medical imaging technology highlights the importance of image quality for effective diagnosis 
and treatment. Yet, noise during capture and transmission can compromise image accuracy and reliability, complicating 
clinical decisions. The rising interest in diffusion models has led to their exploration of denoising images. We present Be-
FOI (Better Fluoro Images), a weakly supervised model that uses cine images to denoise fluoroscopic images, both DR 
types. Trained through precise noise estimation and simulation, BeFOI employs Markov chains to denoise using only the 
fluoroscopic image as guidance. Our tests show that BeFOI outperforms other methods, reducing noise and enhancing clar-
ity and diagnostic utility, making it an effective post-processing tool for medical images.
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1. Introduction
X-ray Digital Radiography (DR) utilizes digital sensors to capture X-ray images [1], allowing for a non-invasive 
initial assessment of patients’ conditions and lesions. This technology is crucial in the diagnosis of various 
diseases and is particularly important in cardiac coronary imaging [2], where arterial diseases can lead to serious 
heart problems. With concerns over the potential cancer risks from ionizing radiation, low-dose imaging has 
become a prevalent yet challenging approach due to the increased noise [3] levels in the images.

Recent advancements in hardware technology and deep learning have led to significant progress in the 
field of image noise reduction using Convolutional Neural Networks (CNN). CNNs can automatically learn 
and extract features from images to effectively suppress noise in low-dose X-ray images [4], thereby enhancing 
their diagnostic quality and minimizing radiation exposure. These high-quality images are essential for complex 
analyses such as segmentation, Computer-Aided Diagnosis (CAD) [5], and reconstruction.

However, the application of deep learning denoising algorithms in medical imaging presents certain 
challenges [6]. Firstly, large amounts of labeled data are required for training, which can be costly and difficult 
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to obtain due to privacy constraints. Secondly, the denoising process may inadvertently introduce artifacts 
that could compromise the diagnostic precision. Therefore, despite its potential, deep learning denoising must 
continue to evolve to better meet clinical demands and mitigate any adverse impacts.

Our study presents a conditional diffusion model that effectively denoises fluoroscopic images using 
weakly supervised learning and simulated noise, thus overcoming the need for paired datasets. This approach 
also incorporates generative models to enhance image quality, preserving details in digital radiography images.

2. Related work
2.1. Image denoising
Signal denoising is essential due to inevitable noise contamination. Common approaches include neighborhood 
averaging with Gaussian kernels [7], which can be biased near contours or patterns. Median filtering [8] 
replaces pixel values with medians, while Fourier transform denoising [9] exploits the separation of images 
and noise in different frequency bands. Wavelet denoising [10] processes wavelet coefficients using a threshold 
and reconstructs the signal. Non-local mean denoising [11] calculates a weighted average based on similar 
neighborhood structures. The BM3D algorithm [12] combines non-local and frequency domain methods for 
effective denoising. While traditional algorithms are fast, they have limited effectiveness on diverse medical 
image noise and fail to address low contrast and detailed information in medical images.

Nowadays, deep learning methods are leading in image denoising [13], with supervised CNNs [14] and blind 
denoising networks like FFDNet [15]. However, this method is far from practical because it is almost impossible 
to obtain clean and noisy images in pairs. To circumvent this difficulty, unsupervised and self-supervised 
methods [16-18] have been introduced subsequently. Noise2Self [19] proposes a blind image denoising method 
based on a generative adversarial network aimed at improving denoising effects without prior knowledge, but 
real images may not satisfy the requirement of J−invariance [20]. To address the issue, the GAN-based CNN 
blind denoiser GCBD [21] generates ground truth first and then inputs the obtained ground truth into the GAN to 
train the denoiser. However, there is a discrepancy between the distributions of the test and training data [22], and 
the training process for GANs is also prone to instability

2.2. DDPM
 Denoising Diffusion Probabilistic Model (DDPM) [23] is a probabilistic generative model characterized by a 
T-step Markov chain, which aims to approximate a given data distribution q(x) with a model pΘ(x). It contains
two processes: the forward diffusion process, where q(x) is diffused into a Gaussian noise distribution, and the
reverse denoise process, where an image x~pΘ(x) is generated from noise by step-by-step sampling.

(1) Forward process
The DDPM process involves progressively adding noise to the same data image until it becomes
entirely random noise. Let x0 denote the data which is uncorrupted, we can derivate the expressions for
the marginal distribution of xt when t is drawn from a uniform distribution, that is, ∀t~U(1,...,T):

, (1)

Where Equation (2) demonstrates that we can sample any noisy version xt in a single step by having the 
original image x0 and specifying a variance schedule αt.
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(2) Reverse process
By utilizing neural networks, we can learn parameterized Gaussian transitions pθ(xt−1|xt), thereby 
facilitating the solution of the inverse process of Markov processes q(xt−1|xt):

2
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Where μθ(xt,t) refers to the learned mean. Practically, one can relate xt and x0 by decomposing μθ into a 
linear combination of xt and the noise approximation εθ. During sampling, we can use simple substitution to 
derive μθ(xt, t) from network prediction εθ(xt,t)
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Where z∼N(0,I). Since the model learns the reverse Markov Chain from xt to x0, which estimates clean 
image x0 from partially noisy image xt, we refer to this as the reverse process.

3. Methodology
3.1. Framework
As shown in Figure 1, the overall framework of our study is built around the conditional diffusion model as 
the backbone. The framework first processes parameters through a Noise State Matching Module (NSM) and 
passes them to the Noiser Module (NM). The NM module performs noise simulation operations on cine images 
based on this. After completing the training of the conditional diffusion model, we input fluoro images as prior 
conditions into the diffusion model to guide it to generate the corresponding denoised images.

Figure 1. Overview of the network structure of BeFOI.
 

 
3.2. Conditional diffusion
When applying reference image-guided diffusion model generation techniques, the unconditional DDPM can 
be transformed into a conditional DDPM [24]. This means that a conditioning variable c is used to guide the 
generation process, enabling the model to produce images according to given conditional information. The 
process of obtaining the conditional distribution from the condition c can be expressed as follows (Equation [4]):
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Here, pθ represents the probability distribution parameterized by θ. XT is the intermediate state image at 
time step t in the diffusion process, xt−1 is the image state at the previous time step, and c is the reference or 
conditional information.

In the conditional diffusion model, a reference image can be used to guide the generation process. Under 
the DDPM framework, the model first gradually adds noise to a clear image through a forward process of a 
Markov chain, resulting in a series of increasingly blurred states yT,…,yt,yt−1,..., where T typically represents the 
time step with the maximum noise level.

In the transition from xt to xt−1, we can partially replace a part of the formula, thereby allowing the inverse 
Markov process to incorporate a conditioning term:

(5)

(6)

Where δ is a hyperparameter that represents the degree of reference of the reference image y. This means 
that in the process of transitioning from the current time step xt to the previous time step xt−1, in addition to 
considering the current noisy image, the information of the reference image y is also utilized to guide the 
generation of an image closer to y. The entire reverse process thus takes place under the condition of the given y, 
leading to results that match the desired target image features more closely.

3.3. Noise state matching & noise simulation
A specific timestamp t is obtained through optimization methods that minimize the distance between the state at 
that moment and a given noisy observation x:

arg min P

t
t

α θ− (7)

Where P represents the p-norm distance. The optimal matching state has been obtained at this point. 
In other words, under the condition of following a preset noise schedule, for any given noisy input x, there 
theoretically exists a posterior state in which characteristics are close to the input x, that is, it has a sufficiently 
low distance metric.

The capability of neural networks to perform erosion simulations on cine images is crucial in making them 
as close as possible to the fluoroscopic image pattern. This process can be understood through the following 
formula:

( , )cy G t y= (8)

Where G represents the noise simulation network, and t is obtained from NSM. Building upon this process, 
yc is fed into a conditional diffusion model. From this, the loss is derived as Equation (9).

| ( ( ( ), )) |,BeFOIL F G NSM z y y= − (9)

where F denotes the diffusion model and NSM(z) signifies the noise simulation mapping for a given input 
z. The training procedure can generally be divided into three stages. Once a stable diffusion model neural 
network has been achieved, during the inference phase, one only needs to use the fluoroscopic mode image as a 
condition.
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4. Experiments and results
4.1. Setup
We tested our denoising method on low-quality X-ray images from the CoroArt dataset, which has 231 coronary 
artery segment images. We compared it with other methods like BM3D and Noise2Self, using their original 
codes and recommended settings. Training was done on a GeForce RTX 3090 GPU. We prepared the data by 
segmenting them into patches and adjusting image window levels for clearer analysis.

4.2. Comparisons
Qualitative results are shown in Figure 2. While all methods demonstrated considerable denoising effects, the 
denoising outcomes of certain algorithms manifested excessive smoothing due to the unknown intensity and 
type of noise, resulting in the loss of fine details and excessive blurring of underlying anatomical structures. 
Conversely, other algorithms failed to thoroughly eliminate noise, leaving noticeable noise patches in their 
results. In terms of algorithmic performance, this algorithm deliberately focused on preserving edge structures 
within images, leading to artifacts that were inconsistent with the true image, despite a more thorough removal 
of noise.

Quantitative results are listed below in Table 1.

Figure 2. Visual comparison of qualitative results from different denoising algorithms. The second row magnifies the 
details within the red box. (a) Noisy fluoroscopic images from the real world; (b)-(e) Results obtained from BM3D, NLM, 
Noise2self, and GCBD, respectively; (f) Our result.

Table 1. Quantitative image dehazing results on the CoroArt datasets

Models
No-GT Via-GT

SNR↑ REBLUR↓ PSNR↑ SSIM↑

BM3D 27.7346 0.41 36.4513 0.9246

NLM 30.7884 0.37 35.7825 0.9329

Noise2self 33.0014 0.31 36.3523 0.9421

GCBD 34.0925 0.36 36.6117 0.9511

BeFOI (ours) 34.2575 0.30 36.7802 0.9573

Note: The best values for each metric are marked; “↓” means the lower the better and “↑” means the higher the better.
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Due to the lack of ground truth information in our research data, and since we designed the denoising 
algorithm specifically for such reference-free conditions, we employed reference-free evaluation metrics for 
performance assessment. Initially, in the calculation of SNR, we selected a rectangular region of interest within 
the image to be evaluated, measuring the SNR by calculating the ratio of the mean pixel value to its standard 
deviation within that region. We introduced another reference-free evaluation method – Reblur technique. This 
method involves applying a secondary blurring process to the image, followed by using a clarity evaluation 
algorithm to compare the changes before and after the blur.

In order to maintain consistency with the commonly used reference-based evaluation systems, we also 
collected additional cine images not used for training and their corresponding noise simulation data as pseudo 
ground truth to calculate the algorithm’s performance values on the traditional image quality evaluation metrics 
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The experimental results show that 
the BeFOI algorithm proposed in this paper performs optimally across all evaluation metrics. Overall, the deep 
learning algorithms outperformed traditional denoising methods in this study. However, it is noteworthy that 
although traditional algorithms approach the performance of deep learning algorithms in terms of PSNR, this 
usually comes at the expense of sacrificing image detail and producing overly smooth results.

4.3. Ablation study
We removed noise estimation from our model and found that it failed to accurately simulate fluoroscopic image 
noise, leading to poor denoising results, as shown in Figure 3. The conditional diffusion model’s reliance 
on accurate noise makes our module essential. Additionally, using smoothed fluoroscopic images as training 
conditions did not yield good results, proving the need for another module.

Table 2. Results of the ablation study on CoroArt

Models
Distortion

PSNR↑ SSIM↑

NSM+NM 36.7802 0.9573

w/o NSM 36.2901 0.9252

w/o NM 35.3531 0.8965

Note: “↓” means the lower the better and “↑” means the higher the better.

Figure 3. Comparison of visual results from 
ablation study. (a) NSM +NM (full model). 
(b) w/o NSM: Removed noise estimation and
matching (Noise-State-Matching Module)
from stage I. (c) w/o NM: Removed noise
simulation (Noiser Module) from stage II.
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5. Retrospect and prospect
Our research presents BeFOI, a method for denoising DR images using a weakly supervised conditional 
diffusion model, aided by cine images for misaligned fluoroscopy. We begin with noise estimation for level 
mapping and simulation, followed by training the model. Denoising is achieved through Markov chains using 
the fluoro image. Results indicate notable noise reduction, clarity, and diagnostic enhancement, benefiting 
postprocessing tasks like vessel extraction. Our tests on a DR dataset show promising outcomes. We intend to 
apply the processed data to segmentation and lesion classification, sensitive to noise, and explore its use with 
other modalities like CT and MRI.
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