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Abstract: In order to further analyze the micro-motion modulation signals generated by rotating components and extract 
micro-motion features, a modulation signal denoising algorithm based on improved variational mode decomposition (VMD) 
is proposed. To improve the time-frequency performance, this method decomposes the data into narrowband signals 
and analyzes the internal energy and frequency variations within the signal. Genetic algorithms are used to adaptively 
optimize the mode number and bandwidth control parameters in the process of VMD. This approach aims to obtain the 
optimal parameter combination and perform mode decomposition on the micro-motion modulation signal. The optimal 
mode number and quadratic penalty factor for VMD are determined. Based on the optimal values of the mode number 
and quadratic penalty factor, the original signal is decomposed using VMD, resulting in optimal mode number intrinsic 
mode function (IMF) components. The effective modes are then reconstructed with the denoised modes, achieving signal 
denoising. Through experimental data verification, the proposed algorithm demonstrates effective denoising of modulation 
signals. In simulation data validation, the algorithm achieves the highest signal-to-noise ratio (SNR) and exhibits the best 
performance.
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1. Introduction
With the continuous development of detection technology, the collection environment with actual rotating 
component targets has become increasingly complex. Due to the presence of ground clutter and interfering 
noise, the collected modulated echo data is often mixed with various noise interferences, making the effective 
modulation information unclear and resulting in a low signal-to-noise ratio (SNR) [1-3]. In order to achieve the 
goal of high SNR for micro-motion modulated echoes, exploring and researching new denoising methods has 
become an inevitable trend. As a result, numerous domestic and foreign scholars have conducted research on 
methods to improve the SNR of radar echoes. Among them, the method based on signal decomposition and 
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reconstruction has achieved good results in clutter suppression and denoising of Doppler signals collected from 
targets with rotating components [4-6].

Fourier transform denoising is a method of global transformation that lacks local descriptive ability. 
During denoising, it will lose a large amount of effective signal, resulting in poor processing results for non-
stationary signals [7]. Wavelet threshold denoising transforms micro-motion modulated signals into the time-
scale domain, but it requires the selection of appropriate wavelet functions and thresholds to achieve a better 
denoising effect [8]. However, these methods are all based on fixed transform basis functions and cannot 
adaptively process structurally complex modulated echo data. The Empirical Mode Decomposition (EMD) 
[9] method based on signal decomposition theory can adaptively decompose the signal itself, dividing it into 
a series of Intrinsic Mode Functions (IMFs) that represent local energy anomalies within different frequency 
bands. However, this method is prone to mode mixing, boundary effects, and other issues. The Ensemble EMD 
(EEMD) and Complete Ensemble EMD (CEEMD) methods are further improvements upon the EMD method. 
EMD, EEMD, and CEEMD are all recursive signal processing methods, but they have limitations when dealing 
with multi-component modulated signals [10]. The non-recursive signal decomposition method, Variational 
Mode Decomposition (VMD) eliminates the process of selecting components and transfers the acquisition 
process of signal intrinsic mode function (IMF) components to a variational framework [11]. This allows for 
adaptive and effective separation of the frequency domain portion of the signal and its components. Compared 
to methods like EMD, VMD has a solid theoretical foundation and effectively avoids mode mixing problems. It 
also exhibits better noise robustness. Although the VMD method effectively decomposes the signal into several 
sub-signals with different center frequencies, several parameter values must be set before the decomposition 
to achieve the best results. Typically, manually selecting parameters cannot produce optimal results. Sarangi 
and colleagues utilized a particle swarm optimization algorithm to simultaneously optimize the values of K 
and α for an optimal solution [12]. Naik and colleagues used the newly proposed orthogonal low sidelobe as an 
optimization objective and applied the firefly algorithm to search for optimal parameter combinations (K,α)  [13].

Based on this, this paper combines the genetic algorithm with the VMD algorithm and applies it to denoise 
micro-motion modulated echoes. This method effectively extracts modulation information while adaptively 
selecting the determining parameters of VMD, minimizing signal loss as much as possible. Both theoretical 
models and practical verification results demonstrate that the application of the improved method proposed in 
this paper exhibits good performance in denoising, effectively improving the signal-to-noise ratio of micro-
motion modulated signals. This lays a solid foundation for further analysis and processing of modulation 
components.

2. GA-VMD denoising method
2.1. Variational mode decomposition
The goal of VMD is to decompose the original signal into intrinsic mode functions (IMFs) with fixed bandwidth 
and center frequencies. The decomposition process of the original signal is essentially a solving process of a 
variational problem.

The expression for the intrinsic mode functions is as follows:

　　(1)

where Ak(t) represents the instantaneous amplitude of uk(t). Φk(t) represents the phase, which is non-
monotonically decreasing.
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If the demodulation method is used to estimate the bandwidth of IMF, it will lead to a variational 
constrained problem. The expression for the variational constrained model is as follows:

　　(2)

where {uk}={u1,…, uk} and {Wk}={W1,…, Wk} represent the IMFs and their corresponding center 
frequencies, respectively. K represents the number of decomposition layers.

To obtain the optimal solution of this variational constrained model, the algorithm introduces the Lagrange 
multiplier λ operator and quadratic penalty function term α. The expression of the augmented Lagrange function 
is as follows:

　　(3)

Finally, the variational constrained model is solved using the Alternating Direction Method of Multipliers 
(ADMM). The expressions for the updated formulas of {uk}, {Wk}, and λ are as follows:

　　(4)

　　(5)

　　(6)

The termination constraint condition is as follows:

　　(7)

where ε represents the convergence accuracy.

2.2. Genetic algorithm-based parameter optimization for VMD
In the VMD algorithm, the penalty parameter  and the number of mode components K need to be preset based 
on prior experience. When the value of K is too large, it can lead to excessive decomposition of the signal. On 
the other hand, when K is too small, it becomes difficult to effectively separate the correct center frequencies of 
the modes, resulting in mode mixing phenomena. Therefore, selecting the appropriate parameter combination is 
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crucial for denoising using VMD. Here, a genetic algorithm is employed to optimize the values of parameters K 
and α, ensuring that each detection of the micro-vibration modulation signal is optimal and effectively reducing 
the randomness in parameter selection.

The genetic algorithm is an adaptive optimization algorithm with excellent global probability search 
capability. The process of optimizing parameters mainly includes steps such as initial coding, generating initial 
population, setting fitness parameters, selection, crossover, and mutation.

(1)	 The punishment parameter α and the number of mode components K are encoded and initialized for 
chromosome initialization, generating an initial population that contains different combinations of 
(K,α) individuals.

(2)	 The signal is decomposed using different combinations within each individual, and the multiscale 
sample entropy of each decomposed mode function is calculated to determine the corresponding 
fitness. The local minimum is defined as the minimum value of the sample entropy.

(3)	 Using the fitness values obtained in step (2), selection is performed on the superior individuals in 
the initial population, followed by crossover and mutation to form a new generation population. This 
process is iterated continuously, comparing the local fitness values to find the global minimum.

(4)	 Stop the iteration and determine the optimal solution for the parameter combination (K,α) .

2.3. Combining genetic algorithm with VMD for denoising
Given the nonlinear and non-stationary characteristics of micro-vibration modulation signals, as well as the 
suboptimal performance of a single VMD denoising method, this paper proposes a VMD decomposition 
approach for denoising modulated noisy signals. By optimizing the decomposition parameters using the GA 
algorithm, the reconstructed modulated signal is obtained. The following is the specific implementation process 
of the proposed method in this paper.

(1)	 Using genetic algorithm to optimize VMD parameters, enabling accurate decomposition of the 
original signal.

(2)	 Using the VMD method to decompose the acquired modulated signal.
(3)	 Reconstructing the original signal to obtain the denoised result.
To verify the effectiveness of the proposed algorithm, two objective performance indicators, SNR and 

root mean square error (RMSE), are used to evaluate the denoising performance of various methods. The 
SNR parameter reflects the denoising ability of the method, with a larger SNR indicating better denoising 
performance. The RMSE reflects the difference in the signal amplitude before and after denoising, with a 
smaller RMSE indicating better denoising performance.

　　(8)

　　(9)

3. Experimental data verification
The performance of the denoising method is evaluated using two objective parameters, SNR and RMSE. 
Gaussian white noise with variances ranging from 0.01 to 0.09 is added to the simulated helicopter echo data 
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with a diameter of 5.029 m and a rotational speed of 6.8 r/s.

Table 1. Comparison of SNR values

Noise variance VMD GA-VMD

0.01 15.127 15.489

0.02 14.527 15.153

0.03 14.425 14.857

0.04 14.127 14.852

0.05 13.256 13.527

0.06 12.775 13.578

0.07 12.084 12.578

0.08 10.852 11.575

0.09 10.052 11.425

Table 1 lists the comparison of values between the traditional VMD denoising method and the proposed 
method in this paper for noise variances ranging from 0.01 to 0.09. From the table, it can be observed that 
the GA-VMD method proposed in this paper has the lowest SNR value. Moreover, because VMD itself is 
a powerful tool for analyzing non-stationary and nonlinear signals, it has a solid mathematical theoretical 
foundation. As long as the parameters are properly selected, the issue of mode mixing can be avoided. 
Therefore, in this paper, a genetic algorithm is used to optimize the two parameters that affect the decomposition 
performance, achieving accurate signal decomposition. The VMD method operates in the frequency domain, 
which also results in relatively high computational efficiency. The decomposed components can be considered 
as stable signals. By reconstructing the original signal, the denoising effect is achieved. When the noise variance 
ranges from 0.01 to 0.09, the proposed method achieves a maximum SNR value. Compared to the traditional 
VMD denoising method, it is higher by 0.271 to 0.803. As the noise intensity increases, this difference also 
increases.

Table 2. Comparison of RMSE values

Noise variance VMD GA-VMD

0.01 0.0387 0.0325

0.02 0.0395 0.0311

0.03 0.0414 0.0411

0.04 0.0426 0.0419

0.05 0.0448 0.0438

0.06 0.0458 0.0442

0.07 0.0462 0.0458

0.08 0.0483 0.0467

0.09 0.0502 0.0481

Table 2 presents the RMSE values of the two methods when the noise variance ranges from 0.01 to 0.09. 
From the table, it can be observed that at the same noise variance, the proposed method achieves the lowest 
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RMSE value. Compared to the traditional VMD denoising method, the RMSE value of the proposed method is 
reduced by 0.004 to 0.0021. As the noise intensity increases, this difference also increases.

To validate the effectiveness of the proposed algorithm for denoising real measurement data, the Robinson 
R44 helicopter is taken as an example. The target is hovering under the far-field conditions of an S-band radar. 
At this time, the azimuth angle α=149° and the elevation angle β=9.15°. The specific radar parameters are 
shown in Table 3.

Table 3. Main parameters of the linear frequency modulation (LFM) pulse signal

Parameters Values Unit

Radio frequency 2.94912 GHz

Bandwidth 120 MHz

Pulse width 2.0835 μs

Pulse repetition frequency 3.7202 kHz

Number of range samples 8,192 piece

Slow time dimension 4,096 piece

Sampling frequency 491.52 MHz

The specific parameters of the rotating components of the Robinson R44 helicopter are shown in Table 4.

Table 4. Structural parameters of the R44 helicopter

Parameters Values Unit

Number of rotor blades 1 piece

Number of blades on a single rotor 2 piece

Blade length 5.029 m

Blade rotational speed 6.8 rad/s

Performing a short-time Fourier transform directly on the modulated component echoes yields their 
spectrogram, as shown in Figure 1(a). From the figure, it can be seen that due to the presence of background 
noise and clutter interference, the signal-to-noise ratio of the modulated component’s spectrogram is not 
high, and the noise interference is mixed in the echo signal. To eliminate these effects and better reflect the 
characteristics of the micro-motion modulated signal, traditional VMD and the method proposed in this paper 
are used for denoising and comparison. Figures 1(b) and (c) respectively show the modulated signals obtained 
after denoising using the traditional VMD method. The traditional VMD method, due to its lack of adaptability 
in the selection of , often resulting in either over-decomposition or under-decomposition of the signal, leading 
to less-than-ideal denoising results.

From Figure 1, it can be seen that the method proposed in this paper achieves more thorough noise 
removal. The processed in-phase axis is clearer, and some information that was masked by high-frequency 
noise is effectively recovered. The denoising effect is relatively ideal. To further demonstrate the superiority of 
the method proposed in this paper, 1,841 distance units on the flight route were selected for analysis. Figure 2 
shows the optimization curves of the Genetic Algorithm-VMD for each of these distance units.

From Figure 2, it can be observed that the fitness value of the data becomes stable when the genetic 
algorithm reaches generation 6, indicating the best decomposition effect. Moreover, compared to other methods, 
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Figure 1. Comparison of measured denoising results

Figure 2. Optimization curves
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the proposed method in this paper preserves a wider frequency band while effectively suppressing high-
frequency noise, resulting in a relatively ideal denoising effect.

4. Conclusion
The proposed method in this paper adopts a combination of VMD and genetic algorithm to optimize the 
decomposition parameters. This approach leverages the adaptability of VMD decomposition, the strong 
mathematical theoretical foundation and the high-frequency noise suppression capability of the genetic 
algorithm itself. The effectiveness of the proposed method in practical application scenarios is validated through 
two objective parameters: SNR and root mean square error (RMSE). The experimental results indicate that the 
proposed method in this paper achieves a significant improvement in signal-to-noise ratio compared to other 
methods. Furthermore, as the noise intensity increases, the denoising effect becomes more pronounced.

The drawback of the proposed method in this paper is that the VMD method requires a lot of parameter 
settings, and it is necessary to select appropriate parameters for accurate signal decomposition, which, in 
turn, leads to better decomposition results. Although the genetic algorithm used in this paper is an intelligent 
optimization algorithm, it does have a significant computational complexity in terms of optimization.
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