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Abstract: Emotional electroencephalography (EEG) signals are a primary means of recording emotional brain activity. 
Currently, the most effective methods for analyzing emotional EEG signals involve feature engineering and neural 
networks. However, neural networks possess a strong ability for automatic feature extraction. Is it possible to discard 
feature engineering and directly employ neural networks for end-to-end recognition? Based on the characteristics of EEG 
signals, this paper proposes an end-to-end feature extraction and classification method for a dynamic self-attention network 
(DySAT). The study reveals significant differences in brain activity patterns associated with different emotions across 
various experimenters and time periods. The results of this experiment can provide insights into the reasons behind these 
differences.
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1. Introduction
The brain, the most complex organ in the human body, has prompted the development of various methods 
to detect its activity, including electroencephalography (EEG), magnetoencephalography (MEG), functional 
magnetic resonance imaging (fMRI), and more. Among these, EEG has emerged as a primary method for 
studying brain science due to its high time resolution, cost-effectiveness, and non-invasive characteristics. 
Emotion, being a conspicuous brain activity, can be objectively reflected through EEG signals. Research on 
emotion recognition based on EEG signals aims to unveil hidden information within the original EEG data 
through understanding the relationship between data and tags, thereby discovering the objective law governing 
brain activity.

Given the high noise and non-stationary characteristics of EEG signals, effective feature extraction 
methods are crucial for signal classification. Traditional feature extraction methods, such as feature engineering, 
typically involve preprocessing the data, extracting features (e.g., differential entropy, DE; power spectral 
density, PSD), and finally employing a simple classifier (e.g., support vector machine, SVM) for classification. 
Zheng et al. utilized DE features and SVM classifiers, achieving an accuracy rate of 83.99% in the full 
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frequency band using the Shanghai Jiao Tong University (SJTU) Emotion EEG Dataset (SEED) [1]. Additionally, 
combining DE features with differential asymmetry (DASM), rational asymmetry (RASM), and traditional 
frequency spectrum (ES) features on symmetrical electrodes proved beneficial [2].

While feature engineering offers good interpretability, directly describing highly abstract features in 
mathematical language can be challenging. With the recent advancements in deep learning, these features 
are often extracted automatically with the assistance of neural networks. Zheng et al. employed deep belief 
networks (DBNs), attaining an accuracy of 86.08% across the full frequency band of SEED [1]. Considering 
the non-Euclidean arrangement of electrode positions in the electrode cap, Song et al. applied graph neural 
networks (GNNs) to emotion recognition, achieving an accuracy of 87.40% by combining graph convolutional 
neural networks (GCNNs) with DE [3]. Building upon this, the proposed dynamic graph convolutional neural 
networks (DGCNNs) achieved an accuracy of 90.40%. Furthermore, Liu et al. used a three-dimensional 
convolutional neural network (3D-CNN) based on attention in the time, space, and frequency domains to 
capture key information between different dimensions of EEG features [4]. Although the accuracy rate reached 
96.28%, it is noteworthy that the sample used was 9 seconds, while the aforementioned models typically 
operated on 1-second intervals.

The hybrid feature extraction method, combining feature engineering and deep learning, has reached a high 
level. However, given the potent feature extraction capabilities of deep learning, a pertinent question arises: 
is it possible to set aside feature engineering and directly engage in end-to-end emotion recognition? Kim et 
al. highlighted that EEG signals collected in experimental environments are subject to numerous interference 
factors, including temporal background, spatial elements, race, language, and culture, resulting in various 
interference noises in EEG signals [5]. Nevertheless, the end-to-end pattern recognition method is more succinct 
and offers greater room for development. This holds significant methodological importance for the evolving 
field of brain interfaces [6].

This paper is based on the dynamic self-attention network (DySAT) proposed by Aravind et al. and 
introduces some enhancements to apply it to emotion recognition in EEG signals [7]. The specific improvements 
are outlined as follows (https://github.com/zhangmingjian180/DySAT_SEED):

(1) A global pooling layer is added to facilitate a smoother decline in the number of hidden layer units.
(2) The original unidirectional attention in the temporal attention layer is modified to bidirectional 

attention, enabling the capture of characteristics both before and after.
(3) The sigmoid activation function is replaced with the leaky rectified linear unit (Leaky ReLU) to 

enhance convergence speed [8].
(4) The residual mechanism is incorporated to stabilize the inter-layer transmission of information [9].
The subsequent sections of this paper unfold as follows: Section 2 briefly introduces the theory related 

to the model. Section 3 formally presents the DySAT model. Section 4 provides a detailed description of the 
experiment using DySAT, along with an analysis of the experimental results. Section 5 offers a discussion and a 
summary of the research in this paper.

2. Related work
The DySAT used in this paper mainly involves two parts: graph attention networks (GATs) and self-attention 
mechanism [10,11].

2.1. Graph attention network
GAT is essentially a convolution operation, but it is different from the ordinary convolution neural network 
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(CNN). The latter is based on grid format data, while the former is based on graph, which is a kind of non-
Euclidean geometric data. Its formal definition is as follows:

G = ( V, E )　　(1)
where V and E represent the set of points and the set of edges. Let the input node eigenvector set be H = {h1, 

h2, …, hn}, hi ∈ RF, the output node eigenvector set be H´ = {h´1, h´2, …, h´n}, h´i ∈ RF´,  and the parameter set 
be P, then:

H´ = GAT ( G, H, P )　　(2)

2.2. Self-attention mechanism
Self-attention mechanism can be used to extract temporal information from sequences. Previously, this field has 
been occupied by recurrent neural networks (RNNs). The latest progress of many natural language processing 
tasks has proved the superiority of the self-attention mechanism in efficiency and performance [11-13]. In 
principle, GAT is also an example of applying an attention mechanism to graphs.

3. Dynamic graph self-attention network
DySAT is mainly composed of a structural self-attention layer, a sequential self-attention layer, and a global 
pooling layer. Its overall architecture is shown in Figure 1.

Figure 1. The architecture of DySAT, where GAT represents the graph attention network, TSA represents the tensorized 
self-attention, and FCN represents the fully connected network

3.1. Model inputs and outputs
The input of the model is a dynamic graph , which is essentially a group of graph sequences, and its formal 
definition is:

D = {G1, G2, …, GT}　　(3)
where T represents the length of the graph sequence. For any i ＜ j ≤ T, meet Gi.V ∩  Gi.V. For a graph G, 

it can be either a directed graph or an undirected graph. It can also be either a weighted graph or a binary graph.
The output of the model is an n-dimensional vector, and each dimension of the vector represents the 

corresponding category possibility of the dynamic graph.

3.2. Structural self-attention layer
The structural self-attention layer is used to extract the spatial structure information from dynamic graphs. For 
the input dynamic graph D, each graph Gi (1 ＜ i ≤ T ) in D undergoes the structure self-attention layer pair, 
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performing the GAT operation respectively. Consequently, the output of this layer is a dynamic graph D´. The 
specific calculation processes are as follows:

zv = ( ∑uòNv αuvW
sxu )　　(4)

　　(5)

　　(6)

where u,v,w indicate the node number and Auv represents the weight of the edge〈u,v〉. For a binary 
graph, its weight is 1. Nv = {v∈V:〈u,v〉∈E}. Parameters Ws and α are to be learned for neural networks. 
ELU stands for exponential linear units, LeakyReLU stands for leaky rectified linear units. xu, zv represents the 
eigenvector of a node u,v.

To better capture the potential features of different types, the multi-head attention mechanism was used, 
namely:

　　(7)

where Hs is the number of heads. 

3.3. Sequential self-attention layer
The temporal self-attention layer is used to extract the temporal variation characteristics of nodes. For the input 
dynamic graph D, temporal self-attention performs the following operations on each node v. The input was set as 
Xv = [x1

v, x
2
v, … xT

v ]
T, where xt

v∈RD´, whereas the output was set as Zv = [z1
v, z

2
v, … zT

v ]
T, where zt

v∈RF´. The 
specific calculation processes are as follows:

Initially, add location embedding:
Zv ← Zv + P　　(8)

where p are the parameters learned through the backpropagation algorithm. 
Subsequently, add the self-attention process:

Zv = β v X v Wv　　(9)

　　(10)

　　(11)

where Wv, Wα, Wk are the parameters learned by the backpropagation algorithm.
Here, the multi-head attention mechanism was also used to better capture the potential features of different 

types:
Zv ← concat(Z1

v, Z
2
v, …, ZHT

v), v∈V　　(12)
where HT is the number of heads. 

3.4. Global pooling layer
The global pooling layer can simply pool the extracted features, thereby reducing the noise. Simultaneously, it 
can also smoothen the transformation range of the number of neurons between layers. For the input dynamic 
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graph D, each graph Gi(1≤i≤T) in the graph D undergoes the pool calculation. The output of this layer O = [o1, 
o1, ...., oT}. The calculation process of the pool is as follows:

　　(13)

                        
3.5. Loss function
The model is a multi-classification model. Therefore, the classical cross-entropy function was used as the loss 
function. The calculation expression is as follows:

　　(14)

wherein, C represents the number of categories, y represents the sample label, and  represents the model 
output value, both of which are in the form of independent hot coding. 

4. Experiment
In this section, the relevant experiments were described using DySAT on SEED [1], followed by an analysis of 
the experimental results.

4.1. Dataset description
SEED is a public dataset created by the team led by Prof. Bao-Liang Lu and Prof. Wei-Long Zheng in the 
Brain-Like Computing and Machine Intelligence (BCMI) Laboratory of SJTU. The team utilized 62-lead 
equipment to sample EEG data from 15 subjects three times each. The sampling frequency was 200 Hz, and 
a band-pass frequency filter of 0.75 Hz was applied. Subjects were required to watch 15 positive, negative, 
or neutral movie clips during each sampling session. Before each clip, a 5-second silence period occurred, 
followed by a ~4-minute clip. Subsequently, subjects conducted a self-assessment for about 45 seconds. After a 
15-second rest, subjects proceeded to the next movie clip.

4.2. Introduction to the experiment
Song et al. achieved a 90.40% accuracy on the SEED using DGCNN combined with DE features, with a sample 
length of 1 second [3]. In essence, using 1 second as the sample length theoretically allows for information in the 
sample to reach at least 90.40% accuracy. Song et al.’s study was taken as the theoretical basis for designing the 
experimental scheme for this study.

Subject-dependent experiments were conducted in this study. The EEG data of each trial for each subject 
serves as the data unit, resulting in 45 experiments. In each experiment, the EEG data of subjects watching 
the first nine movie clips form the training set, the next three comprise the validation set, and the final three 
constitute the testing set. For each emotion, the ratio of training set, validation set, and testing set is 9:3:3.

After dividing the dataset, the data was proceeded for slicing with a length of 1 second. To increase the 
data volume, the step size of the slice window was set to 0.2 seconds, equivalent to 40 points. The sliced sample 
data cannot be directly input into the model because the model’s input data is a dynamic graph. Therefore, the 
sample data was converted into a dynamic graph, as described in the subsection. Following this conversion, the 
data was input into the DySAT model for training and testing, ultimately yielding the experimental results.
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4.3. Data preprocessing
In this section, the conversion of the sample data from EEG form to dynamic graph form was introduced, as 
illustrated in Figure 2.

Figure 2. Converting EEG into a dynamic graph

(1) Construction of graphs: This involves creating a binary undirected graph, as depicted in Figure 3. 
In this graph, nodes represent electrodes, and edges indicate adjacency between two electrodes. 
Consequently, electrode position information is recorded.

Figure 3. Schematic diagram of the connection between 62 EEG channels, which is used to construct the adjacency matrix 
of the diagram

(2) Node characteristics: The potential recorded by the electrode was utilized as the node feature. Initially, 
the sample data was segmented, considering each “small piece” as the state representation of the 
EEG signal at a specific moment. The reason for this choice, instead of using “every moment” in the 
real sense, is primarily because EEG signals do not change significantly in a short period of time. 
Therefore, using a short signal duration better represents the state of the EEG signal. Through repeated 
experiments, the optimal length for the small signal was determined to be 0.05 seconds, equivalent to 
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10 data points. This yields a graph sequence length (T) of 20.
(3) Data normalization: Given the substantial difference between the maximum and minimum values of 

the original potential, direct use as input for the model is impractical, necessitating normalization. 
According to statistical analysis of EEG signals, the amplitude of EEG signals primarily concentrates 
between -100 μV to 100 μV. For instance, in the EEG data collected from subject 1 during the first 
experiment, the highest potential was 14,641.17 μV, while the lowest potential was -12,604.62 μV. The 
amplitude falls within -100–100 μV, with a ratio of V to V of 0.961. The potential distribution, shown 
in Figure 4(a), resembles a normal distribution. Similarly, by examining the function image of f(x) = 
tanh(x), it was observed that f(x) is approximately linear on (-1,1). To preserve data characteristics to 
the greatest extent, this paper employs the following formula for data normalization:

　　(15)

(a)        　　　(b)

Figure 4. (a) Potential distribution; (b) function tanh(x) of subject 1 in the first experiment

4.4. Experimental results and analysis
In deep learning, the configuration of hyperparameters significantly influences model performance. After 
continuous refinement, a set of approximate optimal hyperparameters consistent with the current experiment 
was identified. The details are summarized in Table 1.

Table 1. Hyperparameters used in the experiment

Name Value Explanation

Structural head 2,2 Attention heads in each structural layer

Structural layer 8,8 Units in each structural layer

Temporary head 2,2 Attention heads in each temporary layer

Temporary layer 8,8 Units in each temporary layer

Optimizer AdamW Optimizer used in gradient descent

Learning rate 0.001 Initial learning rate for self-attention model

Weight decay 0.000001 This parameter is used in AdamW
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Following 45 experiments, the results are presented in Table 2. The average accuracy achieved using 
DySAT as a classifier is 0.6215, markedly higher than random discrimination (with an accuracy of 0.3333 
for three classifications). This demonstrates that the end-to-end DySAT, based on a dynamic GNN, can 
autonomously extract valuable features hidden in EEG data.

Table 2. Experimental results

Subject Session 1 Session 2 Session 3 AVG STD

1 0.7224 0.4295 0.4032 0.5184 0.1447

2 0.4041 0.4401 0.5262 0.4568 0.0512

3 0.4960 0.4750 0.3615 0.4442 0.0591

4 0.6796 0.6222 0.4044 0.5687 0.1185

5 0.5202 0.6725 0.6066 0.5998 0.0623

6 0.8655 0.6370 0.7375 0.7467 0.0935

7 0.3432 0.7999 0.3985 0.5138 0.2035

8 0.6544 0.6326 0.8998 0.7289 0.1211

9 0.8034 0.7724 0.5480 0.7080 0.1138

10 0.6240 0.6205 0.5740 0.6062 0.0228

11 0.7224 0.6367 0.8688 0.7426 0.0958

12 0.5398 0.4221 0.7349 0.5656 0.1290

13 0.5380 0.7851 0.8176 0.7136 0.1249

14 0.6559 0.6488 0.5738 0.6262 0.0372

15 0.8274 0.6834 0.8377 0.7828 0.0704

All All 0.6215 0.1511

Considering all sessions for all subjects, the standard deviation of the classification results is 0.1511. Across 
the 45 experiments, the lowest accuracy rate was 0.3432 (Session 1 of subject 7), and the highest accuracy rate 
was 0.8998 (Session 3 of subject 8). These data reveal significant variations in classification results among 
different subjects and sessions. Comparing the data in the STD column, it is evident that, except for subject 6, 
the standard deviation of other subjects is less than the overall average. This indicates that the differences in 
EEG data between different sessions of the same subject are smaller than those between different sessions of 
different subjects, emphasizing that subject variation is a crucial factor influencing the characteristics of EEG 
data.

To align the research in this paper with both domestic and international studies, some data from the 
experimental results were compared. It is important to note that due to different data preprocessing methods and 
experimental perspectives (single-mode and multi-mode), the accuracy of experimental results alone cannot 
conclusively prove the model’s performance. Nonetheless, it can offer a reference. Table 3 indicates that the 
current effectiveness of emotion recognition algorithms based on feature engineering is not particularly ideal, 
leaving ample room for improvement. The DySAT model employed in this paper stands out as a superior 
algorithm among similar approaches.
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Table 3. Comparison of similar experiments

Models Mean STD Class Database

MLP [6] 0.31 0.03 4 AMIGOS

Encoder [6] 0.50 0.01 4 ASCERTAIN

CNN-LSTM [6] 0.37 0.01 4 DECAF

This study 0.62 0.15 3 SEED

5. Summary and discussion
This paper improved DySAT and applied it to emotion recognition in EEG data, demonstrating the model’s 
effectiveness. The experimental results reveal significant variations among different subjects and sessions. It is 
important to note that these differences are not solely attributable to the model. For instance, in the experiment 
conducted by Song et al. [3], the result was 90.40/8.49, indicating some disparities. Therefore, the primary 
reasons for the considerable differences in this experiment can be preliminarily attributed to two factors.

Firstly, the inherent nonstationarity of EEG data results in inevitable data differences. However, in theory, 
appropriately increasing the length of sample data can mitigate this difference. Increasing the sample length 
theoretically enhances the amount of effective information. Yet, it should be acknowledged that larger samples 
pose a challenge for the classification method, requiring the handling of a larger volume of data. Balancing 
these aspects may become a key research direction.

Secondly, differences arise due to limitations within the model itself. As known, the strength of deep 
learning lies in the “depth” of the model, as deeper models theoretically extract more abstract features. The 
DySAT proposed in this paper comprises only six layers, which could contribute to the observed difference. It is 
worth noting that constructing deep GNNs remains an unsolved problem in the field. Anticipated development 
in GNNs is expected to address this issue.

It is important to recognize that the DySAT proposed in this paper is not the optimal classification model, 
and there exists a gap between the hybrid feature extraction method, combining feature engineering and deep 
learning (see Section 2 for details). However, this gap is not fixed, given that deep learning is grounded in the 
universal approximation theorem [14]. Therefore, the model holds significant potential for improvement. This 
paper aims to demonstrate the model’s effectiveness, leaving the avenue open for substantial performance 
enhancement in future research.
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