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Abstract: In this paper an analysis of the physical 
principles of two-criterion optimization Pareto static 
mode of operation of power sensors cantilever type 
of rectangular type with a stable cross-section. The 
proposed criterion based on the Cauchy number is 
one of the characteristic numbers of the proportional 
miniaturization of microsystem technology. It is 
established that, for a rectangular cantilever with a 
stable cross-section, the value of the Cauchy does 
not depend on the width of the microconsole and the 
material from which it is made.
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0 Introduction

Cantilever (cantilever beam) is a basic element of modern 
sensors of external force. The physical principle of the 
operation of the sensors is based on the effect of bending 
deformation of the cantilever under the action of the 
applied force to its free end, which is based on the work of 
biosensors[1,2] and probes for atomic force microscopy[3].
In order to ensure the required stable performance of 
the sensors, in the process of designing them, it is often 
necessary to seek a compromise between the projected 
parameters, for example, to reach the minimum mass of 
the sensor without decreasing the mechanical strength 
of its design, ets. Such a multicriteria approach greatly 
complicates the search algorithm for an Optimy project 
solution; therefore, when formulating the optimization 

problem itself, they try to clearly define the control 
parameters, performance criteria, functional constraints, 
the scope of finding solutions, and the optimization 
algorithm itself.
The simplest  task is  the task of one-cri terion 
optimization. It is formulated as follows[4,5]:
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Where the variables x  are the vector X x x xn= ( , ,..., )1 2 , 
f x( ) is of objective or of fitness, the functions, g xi ( )  

and h xj ( )  are the limiting (equality and inequality 
constraints) function in canonical form and represent 
the latest condition restrictions on the fitness function.
The formulation (1) is interpreted as the task of 
searching for the extremum of the target function by the 
purposeful change of the controlled parameters within 
the allowable range of changes in the values of the 
design parameters. However, one-factorial optimization 
is ineffective, since its solution depends on the 
constraints imposed on the design parameters. If these 
restrictions are chosen incorrectly, the solution will not 
have physical content.
Often, in the optimization problem, many criteria 
are taken into account and optimization is attempted 
by all criteria at the same time. However, to achieve 
optimization of all the criteria taken into account is not 
possible in principle at the same time; therefore, more 
attention is paid to a limited number of optimization 
criteria. Moreover, a certain compromise was achieved 
by reducing the number of knowingly ineffective 
solutions, using the Pareto optimization method.
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It should be noted that the optimal solution for Pareto 
means  the best solution for Pareto means that it does
not contradict the two axioms of Pareto. For the first 
axiom of Pareto, when estimating one of the two 
solutions is not worse than estimating another solution 
for all project parameters or, in the extreme case, one 
of them is strictly better, then the first solution has an
advantage over the other. The second axiom of Pareto 
states that, when the solution does not fall into any 
pair that was analyzed under the first axiom, then it 
cannot appear among the selected and initial set of 
possible solutions. Thus, the Pareto procedure does not 
distinguish the only solution but only simplifies the 
procedure for choosing the most optimal solution, and 
the improvement of one criterion is accompanied by the 
deterioration of another criterion[4,5].
In relation to cantilever-type power sensors, the main 
attention in the literature was given to the study of 
the problem of two-criterion approximation of the 
optimization of the operation of power sensors[6-9]. In 
this paper, using the Nondominated Sorting Genetic 
Algorithm (NSGA-II) developed in[10], a physical and 
two-criterion Pareto analysis of the static mode of the 
cantilever power sensor operation was performed. It 
is shown that, from the point of view of finding the 
optimal values of the design parameters of cantilever-
type power sensors, the characteristic number (the 
number of Cauchy) of the proportional miniaturization 
of the microsystem technology can be considered as 
one of the criteria of the optimization problem. It is 
also established that, for a rectangular cantilever with 
a stable cross-section, the value of the Cauchy number 
does not depend on the width of the microconsole and 
the material from which it is made.

1 Basic results and discussion

Figure 1 shows the calculation scheme of the power 
sensor in the form of a cantilever of a rectangular type 
with a stable cross section, one end of which is rigidly 
fixed and the other is free. Here, L, w, and t are the beam 
lenght, width, and thickness, k is the spring constant, F
is normal force action on free beam end, and E is the 
Young’s modulus of elasticity the cantilever material.
In the model of the micromechanical sensor as an 
inertial system with lumped parameters, the ratio k/m
has the dimension of the square of the cyclic frequency 
ω0

2 , and m  is the mass of the cantilever. For rectangular 

cantilever types with a stable cross section, the 

coefficient of elasticity k
wt

L
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3

34
[11], therefore, the 

relationship between inertial and elastic properties of a 
sensitive element is described by the ratio
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where the left-hand side of equality (3) is a known 
Cauchy number[12]:

Ca L
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0
�   (4)

as one of the characteristic numbers expressing the laws 
of proportional miniaturization of elastic-dynamic 
microsystem technology. Taking into account that 
during bending of the console, the volumes of local 
deformation with the speed ϑ ρS E= /  of sound 
propagate, the Cauchy criterion can be written as 
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In the cantilever with a constant rectangular cross 
section, the distance from the surface to its neutral axis 
is equal c=t/2, so the right side of the equality (3) can 
be transformed into a kind:
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Consequently, for cantilever-type power sensors with 
a constant rectangular cross section, the value of the 
Cauchy number (5) does not depend on the width of the 
microconsole and the material from which it is made. 
Therefore, the number of Cauchy is also convenient to 
choose the optimization criterion when designing power 
sensors:
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(6)

with a minimum number of design parameters c and 

Figure 1. The power sensor in the form of a cantilever of a 
rectangular type with a stable cross section
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L. From a practical point of view, the use of power 
sensors, for example, in atomic force microscopy, 
requires the design of sensors with the highest possible 
value, that is, according to Mastinu et al. (4), as short 
as possible microconsole. Therefore, based on the 
physical analysis, we substantiate the criterion (6) to be 
minimized or maximized.
From a practical point of view, the use of power 
sensors, for example, in atomic force microscopy, 
requires the design of sensors with the highest possible 
value, that is, according to (4), as short as possible 
microconsole. Therefore, based on the physical 
analysis, we substantiate the criterion (6) to be 
minimized or maximized. The sensitivity S

d

dF
=

δ
 of the 

working element of the power sensor is determined by 
the elastic-dynamic characteristics of the cantilever; 
therefore, the actual criterion for optimizing the 
sessionors is the amplitude of the bend of the 
microconsole:
f L w tδ δ�      (7)

Given the small deviations of the microconsole 
δ<<L, according to the Euler formula[13], the bending 
amplitude is:

δ =
4 3

3

FL

Ewt
(8)

or taking into account the shear deformations described 
by the shear coefficient (for a rectangular cross section
αst=3/2): 

δ α= +
4 3

3
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FL

GS�
 (9)

where G
E

2 1( )ν
is Poisson coefficient.

Unlike criterion (6), the optimization criterion (7) for 
the given parameter values F and E has three design 
parameters such as L, w, and t.
From the point of view of achieving maximum 
sensitivity of the sensor, in the optimization problem, 
the criterion (7) is actually maximized, so when using 
the minimization algorithm, function (7) should be 
chosen in the form fδ (L, w, t)=-δ. However, if you 
consider the functional limit on the maximum static 
deflection of cantilever, then this criterion is written in
the form:
f L w tδ δ δ�       (10)

and using the minimization algorithm, the criterion (10) 
will be minimized.

The consideration of the functional limit on the 
maximum value of the static deflection δmax  gives the 
possibility to substantiate the functional constraints in 
dimensional δ δmax =  or in dimensionless (canonical 

forms 1 2 3( , , ) 0g x x x ≤

g x x x( , , ) max
1 2 3 1= −

δ
�

 (11)

The functional limitation to the static deflection is 
associated with a limitation to the maximum mechanical 
stress, which follows from the need to ensure the 
possibility of multiple deflection of the microconsole 
for a long time of operation of the sensor. As established 
in the resistivity of materials, the nature of the 
distribution of normal stresses σ =

Mc

I
 arising from the 

bending stress moment and the fatigue curve must be 
taken into account. The strength of the material is 

defined as S
ny
yieldσ , where σ yield

 is the material 

yield strength. The yield strength σ yield  corresponds to 
the stress at which the material gets plastically 
deformed. The coefficient n is safety coefficient and 
n≥1[7], so the limit on the maximum mechanical stress 
in the cross section of the rigidly fixed end of the 
microconsole will look like:

σmax ( , , )t w L
FL

wt
Sy= − ≤

6
0

�
 (12)

Design parameters such as L, w, and t determine 
the elastic properties of the microconsole, so for the 
cantilever with a rectangular cross-sectional cross-section, 
the following target optimization function will look like:

f L w t wECak ( , , ) /= 2 �   (13)

An impor tan t  c r i t e r ion  o f  op t imiza t ion  in  a 
micromechanics is the mass of a sensitive element as 
such a physical parameter that characterizes the inertia 
of the external force. For a cantilever-type sensor with 
a rectangular section, an objective function – the mass 
criterion has the form:
f L w t m Lwt�         (14)

The other constraints can be written: Bending stress 
constraint FLw/2I-σmax≤0; deflection constraint FL3/3EI-
δmax≤0; length-deflection restriction L-10δ≤0; width-
thickness restriction w-10t≤0; and dimension restriction
Lmax-L≤0, wmax-w≤0, tmax-t≤0.
In Figure 2, the two-criterion fronts of Pareto are 
shown in coordinates (δ,m) (а) and (δ,Ca) (b). 
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H e r e ,  t h e  m a t e r i a l  d e n s i t y  ρ = 2 3 3 5  k g / m 3, 
Yo u n g m o d u l u s = 1 8 0 ∙ 1 0 9  N / m 2 ,  a n d  Yi e l d 
s t rength=300∙10 9 N /m 2.  Targe t  func t ions  a re 
formulated in the form g (L, w, t)={δ(L, w, t), m 
(L, w, t)} and f (L, w, t) = {δ (L, w, t), Ca (L, w, t)}. 
The calculations were performed using method 
NSGA-II by ES-EA procedures for optimization in 
Matlab codes[15,16]. For calculation, the parameters 
of optimization used: Number of population = 100 
and number of iterations = 100. The birectic fronts 
of Pareto in coordinates (δ, m), [7,14-16] shown in 
Figure 2a, is presented as a test for comparison to 
confirm the correctness of the conclusions as drawn
in this paper. As we can see in Figure 2b, in the 
variations of the geometric parameters of the 0.1 μm
<t< 5 μm, the quality of the Pareto-optimization 
front is high with a uniform distribution of the 
approximation points by the Cauchy optimization 
criterion.

2 Conclusions

In this paper an analysis of the physical principles 
of two-criterion optimization Pareto static mode 
of operation of power sensors cantilever type of 
rectangular type with a stable cross-section. The 
proposed criterion based on the Cauchy number is 
one of the characteristic numbers of the proportional 
miniaturization of microsystem technology. It is 
established that, for a rectangular cantilever with a 
stable cross-section, the value of the Cauchy does 
not depend on the width of the microconsole and the 
material from which it is made.
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