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Abstract: Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic 
waste. However, current domestic waste incineration power plants often face challenges related to maintaining consistent 
steam production and high operational costs. This article capitalizes on the technical advantages of big data artificial 
intelligence, optimizing the power generation process of domestic waste incineration as the entry point, and adopts four 
main engine modules of Alibaba Cloud reinforcement learning algorithm engine, operating parameter prediction engine, 
anomaly recognition engine, and video visual recognition algorithm engine. The reinforcement learning algorithm extracts 
the operational parameters of each incinerator to obtain a control benchmark. Through the operating parameter prediction 
algorithm, prediction models for drum pressure, primary steam flow, NOx, SO2, and HCl are constructed to achieve short-
term prediction of operational parameters, ultimately improving control performance. The anomaly recognition algorithm 
develops a thickness identification model for the material layer in the drying section, allowing for rapid and effective 
assessment of feed material thickness to ensure uniformity control. Meanwhile, the visual recognition algorithm identifies 
flame images and assesses the combustion status and location of the combustion fire line within the furnace. This real-
time understanding of furnace flame combustion conditions guides adjustments to the grate and air volume. Integrating 
AI technology into the waste incineration sector empowers the environmental protection industry with the potential 
to leverage big data. This development holds practical significance in optimizing the harmless and resource-oriented 
treatment of urban domestic waste, reducing operational costs, and increasing efficiency.

Keywords: Multivariable reinforcement learning engine; Waste incineration power generation; Visual recognition 
algorithm

Online publication: September 25, 2023

1. Introduction
Waste incineration is an ideal method for the eco-friendly and resource-driven treatment of urban domestic 
waste. However, current domestic waste incineration power plants generally require much more stable steam 
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production and high production costs [1,2]. Research shows that the complex combustion control objects of 
municipal solid waste have characteristics such as unknown, time-varying, random, and dispersive system 
parameters, as well as elusive and variable system time lags. These systems exhibited pronounced nonlinearity 
and interdependencies among their various variables. Additionally, environmental interference introduces 
unknown, diverse, and random factors into the equation. For the control problem of this uncertain and complex 
object (or process), traditional control methods based on mathematical models make it difficult for effective 
control, hence strategies with more effective control must be explored [3].

The algorithms constructed by various control strategies exhibit variations in complexity, robustness, 
and decoupling performance. Additionally, there are disparities in software and hardware resource costs 
within the realm of technical implementation. What people seek is a cost-effective control strategy. The 
available strategies encompass neural network control, fuzzy logic control, expert system control, and artificial 
intelligence control [4]. The multivariate reinforcement learning algorithm comprises three components: feature 
input, decision algorithm engine, and decision output [5]. It utilizes operating parameters to characterize waste 
incineration. The relationship between relevant equipment instructions at each operational point is established 
based on multidimensional historical data extraction.  This approach provides benchmark operating parameters, 
eliminating the need for numerous test experiments typically required in conventional control. Consequently, it 
swiftly generates benchmark characteristic data for each furnace. By mining and reconstructing data from waste 
incineration power plant operations, algorithms are developed to control variables such as steam flow, feeder 
speed, upper grate cycle times, lower grate cycle times, primary air frequency, secondary air frequency, primary 
air temperature, and the coordination of each furnace. These algorithms also address control of nitric oxide and 
nitrogen dioxide (NOx), sulfur dioxide (SO2), and hydrochloric acid (HCl) emissions, facilitating automatic 
control of the waste incinerator’s combustion process in the power plant. The incorporation of AI technology 
empowers the environmental protection industry with the potential to harness big data. This development 
carries practical significance by reducing costs and enhancing efficiency in the optimization of eco-friendly and 
resource-driven urban domestic waste treatment [6].

2. Multivariate reinforcement learning algorithm
Reinforcement learning is an end-to-end method that combines perceptual decision-making with continuous 
iterative optimization through trial and error and has strong autonomous learning capabilities [7-10]. In recent 
years, inspired by biological groups and artificial intelligence, reinforcement learning algorithms have 
evolved from solving individual decision-making problems to optimizing collaboration problems in clusters, 
injecting new momentum into enhancing the convergence and emergence of cluster intelligence [11]. The 
multivariable reinforcement learning algorithm includes feature input, decision algorithm engine, and decision 
output. The algorithm principle in waste incineration process optimization is to select steam flow, primary air 
volume, pressure of each air chamber, central steam pressure, furnace smoke temperature, and push. Main 
operating parameters such as feeder stroke and stroke are used as indicators of waste incineration conditions. 
The corresponding relationships of relevant equipment instructions under each working condition point are 
summarized through multi-dimensional historical data extraction, and benchmark operating parameter guidance 
values are given.

By extracting features from historical data, the corresponding relationship between changes in primary 
steam flow rate and feeder speed instructions, grate cycle times, and primary and secondary air frequency 
instructions can be obtained to form a benchmark for control instructions. It avoids using many test experiments 
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to obtain benchmark data in conventional control and quickly obtains the benchmark characteristic data of each 
furnace.

3. Execution of the parameter prediction algorithm
Waste incineration boilers have large fluctuations in waste calorific value and substantial delay and inertia 
characteristics. It is difficult for traditional industrial controllers to solve the control lag problem caused by 
considerable delay and large inertia. In addition, the waste calorific value fluctuates wildly and is uncertain, 
further increasing the difficulty of control. Making use of data-driven advantages and combining the principles 
of industrial processes, we develop an industrial prediction engine. Based on the prediction results and 
combined with recommended algorithms, we guide the control system or operators to take early actions to 
alleviate the poor control performance caused by considerable delays, large inertia, and model uncertainty, as 
well as the problem of large fluctuations in operating parameters.

3.1. Alibaba Cloud prediction engine
The industrial prediction engine needs to analyze the relationship between input and output based on the 
principle of the production process and historical operation data, construct characteristic variables, and combine 
different system characteristics; characteristic variables (original characteristics + structural characteristics) and 
target variables are the parameters to be predicted. The industrial forecasting engine is the core of the algorithm. 
It is constructed through machine learning and deep learning algorithms. The industrial forecasting engine will 
regularly train and update the model according to the operation of the forecast results to maintain the model 
with high forecasting accuracy.

The Alibaba Cloud prediction engine involves parameters such as central steam temperature and main 
steam flow forecast. Based on the prediction model, each control parameter is optimized to improve the boiler 
stability further. The steam flow prediction relies on the Alibaba Cloud Industrial Brain deep learning platform 
algorithm. It uses historical operating data (pushing stroke, pushing action, primary air volume, primary air 
pressure, secondary air volume, furnace temperature, flue gas content (oxygen, feed water flow, drum level, 
central steam pressure, and other dozens of operating parameters) have established a steam volume prediction 
model, which can accurately predict the steam volume after 180 seconds in the future, and provide predictions 
and predictions for subsequent steam volume trends. The time decision provides a practical basis, which 
alleviates the impact of large fluctuations in steam volume caused by the uncertainty of the calorific value of 
waste, which is difficult to control effectively.

3.2. Prediction of drum pressure
Applying Alibaba Cloud’s big data analysis technology and combining it with the operating mechanism of 
the unit, a correlation analysis was conducted on historical data encompassing steam drum pressure. This 
analysis also encompassed determinants such as feed rate, primary air volume, primary air temperature, TX1 
temperature, TX2 flue inlet temperature, and flue gas content, including oxygen content. These parameters 
were identified as key indicators affecting drum pressure. Leveraging the Alibaba Cloud prediction engine 
and employing a residual modeling method, the study aimed to find the influence characteristics of the drum 
pressure generation when the aforementioned characteristic parameters change, and as a result, a drum pressure 
prediction model after 5 minutes was finally established. The prediction model is shown in Figure 1 below:
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Figure 1. Real-time effect curve of steam drum pressure prediction

It can be seen from the drum pressure prediction curve that the overall fluctuation of the drum pressure 
predicted value is consistent with the actual value. However, the overall trend phase is about 2 minutes ahead 
of the actual drum pressure value, which can better predict the future drum pressure. This predictive capability 
has the practical advantage of anticipating changes in the boiler steam load through prediction, enabling 
the adjustments of air volume based on the prediction results, which then facilitates proactive steam load 
adjustments.

3.3. NOx content prediction
Utilizing Alibaba Cloud‘s big data analysis technology, coupled with an understanding of the unit’s operational 
intricacies, a comprehensive correlation analysis of historical NOx data was conducted. This analysis 
considered variables such as feed rate, flue gas oxygen content, primary and secondary air volumes, primary 
air temperature, TX 1 temperature, TX2 flue inlet temperature, ammonia (NH3) flow rate, dilution water flow 
rate, and other parameters identified as characteristic indicators of NOx content. By harnessing the predictive 
capabilities of the Alibaba Cloud prediction engine and employing a residual modeling approach, the study 
aimed to ascertain the impact characteristics on NOx generation resulting from changes in the aforementioned 
characteristic parameters. Consequently, a NOx content prediction model was successfully developed to forecast 
NOx content level two minutes in the future. The prediction model is shown in Figure 2 below:

Figure 2. NOx prediction effect curve

In Figure 2, the green curve represents the predicted NOx content values, while the yellow curve represents 
the actual NOx content values. The predicted values closely align with the overall fluctuation of the actual 
values. Notably, there exists a consistent phase difference of approximately 2 minutes, with the predicted 
values showing trends ahead of the actual NOx content values. This advanced prediction capability significantly 
enhances the capacity to anticipate forthcoming fluctuations in NOx content trends and it holds practical 
advantages by enabling the proactive sensing of changes in boiler steam load through prediction. Subsequently, 
it allows for the implementation of control instructions, such as NH3 water flow and secondary air volume 
adjustments, based on prediction results. This proactive approach facilitates advanced NOx control adjustments.

3.4. SO2 content prediction
Similarly, Alibaba Cloud’s big data analysis technology is used to conduct SO2 data correlation analysis on 
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the unit’s historical data and targeted test adjustment data and determine the parameters based on the feed rate, 
flue gas oxygen content, and primary and secondary air volumes, primary air temperature, TX1 temperature, 
TX2 flue inlet temperature, lime volume, dilution water flow, and other parameters that are used as SO2 content 
characteristic parameters. Applying the Alibaba Cloud prediction engine and residual modeling method to 
find the impact characteristics on SO2 production when the aforementioned characteristic parameters change, 
a prediction model for SO2 content after 2 minutes was finally established. The prediction model is shown in 
Figure 3 below:

Figure 3. SO2 prediction effect curve

In Figure 3, the green curve is the predicted value of SO2 content, and the yellow one is the actual value of 
SO2. The overall fluctuation of the predicted value is consistent with the actual value, but the overall trend phase 
is about 2 minutes ahead of the actual value, which can better predict the future fluctuation of the NOx trend; 
through prediction, the changing trend of boiler steam load can be perceived in advance, and then according to the 
prediction result, the lime supply command can be acted in advance to realize the advance adjustment of SO2.

4. Anomaly identification algorithm engine
The anomaly identification algorithm mainly uses unsupervised learning methods from massive historical 
data to identify normal and abnormal states under different operating conditions. It then uses big data machine 
learning algorithms to learn and model the differentiated operating conditions. Through historical data learning, 
we can identify the thickness deviation of the material layer at a specific primary air volume, identify the 
abnormal temperature of a particular section of the grate under a specific primary air volume and primary air 
temperature, and then reflect the garbage humidity. Through abnormal recognition and sensing, it is ensured that 
the system can make automatic and targeted adjustments, promptly discover problems during operation, and 
maintain the stability of operating parameters. The primary architecture process of the algorithm is as follows in 
Figure 4:

Figure 4. Primary structure of anomaly recognition algorithm
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As shown in Figure 4, after obtaining the operating history data, the anomaly identification algorithm 
divides the working conditions through unsupervised clustering algorithms such as K-means and K-MEDOIDS, 
eliminates the abnormal working condition data, and obtains data within the normal generalized working 
conditions range. At the same time, the Alibaba Cloud modeling engine is used to model the standard working 
condition data and obtain the big data black box model of the target variable. The theoretical standard value can 
be calculated in real-time, and after comparing it with the actual value, it can judge whether the current state 
deviates from the standard value.

In the power generation process of waste incineration, the consistency in the quantity of waste fed into 
the furnace is a critical factor that determines the quality of the combustion process. If an excessive amount 
of waste is introduced into the furnace, it poses the risks of overtemperature, overloading, and exceeding 
environmental protection standards. Conversely, if insufficient waste is fed into the furnace, it can lead to 
burnout, causing the furnace temperature to drop rapidly or fall below the range of 8–50°C, which poses 
environmental protection hazards. However, accurately assessing the quantity of garbage inside the furnace 
presents challenges due to the complex and changeable nature of waste. Factors such as blockages, slippage, 
and bridging of garbage can obscure the direct measurement of garbage feeding rates. Additionally, issues such 
as garbage non-ignition and deflagration can lead to operator misjudgment, resulting in either overfeeding or 
underfeeding of waste, leading to material buildup or shortages. Accurately and effectively determining the 
garbage level within the furnace has thus emerged as a key factor in determining the feasibility of implementing 
automated combustion processes.

In this project, an effective method for gauging the quantity of garbage being introduced into the furnace 
was devised. It relies on the incinerator’s furnace structure, specifically using the wind pressure within the 
drying section as a key indicator for estimating the garbage level within the furnace. However, it’s worth noting 
that the wind pressure in the drying section is affected by both the primary air volume and the damper settings 
of the drying section. Yet, the instantaneous value of this parameter cannot directly represent the amount of 
garbage due to the varying openings of different dampers, including those in the combustion section. To address 
this challenge, the Alibaba Cloud anomaly identification algorithm engine was introduced. It employs wind 
pressure as an indicator of garbage feed quantity and conducts extensive big-data modeling of the wind pressure 
in the drying section. This process involves selecting 3–5 months’ worth of historical operational data, utilizing 
unsupervised learning methods to filter out abnormal operating conditions, and obtaining standardized data 
for normal working conditions. Within these normal conditions, parameters such as primary wind frequency 
feedback, primary wind pressure, and the openings of each section’s damper are selected as input features for 
the model. The Alibaba Cloud data modeling engine is then employed to establish a wind pressure model for 
the drying section. The model leverages the deviation between the predicted wind pressure (Ppredicted) and the 
actual win pressure (Pactual) to ascertain the current amount of waste being fed into the furnace, followed by 
adjusting the feeder’s feeding speed dynamically, ensuring a consistent feed volume. Figure 5 illustrates the 
wind pressure model and the feed speed control curve for a drying section of the incinerator.

As shown in Figure 5, the upper diagram presents the actual wind pressure values in blue and the predicted 
wind pressure values in red, while the purple curve represents the difference between the actual value minus 
the predicted value. The lower diagram shows the corresponding feeder speed value. In the yellow box within 
the figure, it is evident that the actual wind pressure values significantly exceed the predicted value, resulting 
in a substantial deviation. This signifies an excessive amount of garbage within the drying section, prompting a 
reduction in feeder speed and a decrease in the feeding quantity. On the other hand, the red box within the figure 
reveals instances where both the wind pressure and actual compression values are significantly lower than 
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the predicted value, with a minimal deviation. This indicates an insufficient amount of garbage in the drying 
section, leading to an increase in feeder speed to swiftly replenish the material. Through the wind pressure 
prediction model, the condition of garbage within the furnace can be continually monitored and assessed in 
real-time. Adjustments to the feeding speed can then be made as needed, effectively addressing the challenges 
associated with assessing furnace garbage levels and ensuring uniform feeding.

Figure 5. Wind pressure model and feed speed control of a row of drying sections

5. Visual recognition algorithm engine
The primary function of the visual recognition algorithm is to identify flame video images. Through visual 

recognition, it can promptly detect the burning conditions and burning locations of the garbage within the 
furnace, and then facilitates quick adjustments to the grates and primary fans of each section to ensure a stable 
combustion process. Within this project, the visual recognition algorithm primarily employs image classification 
and image segmentation techniques to analyze various aspects of the flame image, including the fire line, 
flame area, smoke, and brightness. This information is then subjected to post-processing to enable real-time 
analysis of the combustion status of the grate flame, which serves as input for subsequent control optimization 
algorithms. The overall algorithm flow is depicted in Figure 6 below:

Figure 6. Visual recognition algorithm flow chart
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A recognition algorithm is developed utilizing on-site flame image conditions, and the identified flame, fire 
line area, and corresponding position relationship are divided into images to conduct a more detailed analysis of 
the flame-burning state, as shown in Figures 7 and 8.

Figure 7. Flame image recognition algorithm: left side of the flame in furnace #1

Figure 8. Flame image recognition algorithm: right side of the flame in furnace #2

When the camera is clear, the current combustion situation in the furnaces and the material layer in the 
combustion section can be evaluated based on the flame width and brightness to make targeted combustion 
adjustments.

6. Discussion and conclusion
To assess the performance of the AI automation system, an 18-day evaluation test was carried out. During the 
test, the system was operated in the automatic and manual modes for nine days, respectively, while ensuring 
the unit remained under consistent operating conditions with similar waste calorific values. Based on the 
operational data analysis during the test period, the AI control system primarily demonstrated efficiency 
improvement in four aspects, including optimizing and transforming a total of 45 control loops across the 
feeding system, wind and smoke system, and exhaust gas treatment system. Moreover, parameter tuning yielded 
positive outcomes in five aspects: improving the automation level of the unit, improving combustion stability, 
reducing manual operation intensity, reducing plant power consumption, improving variable load performance, 
and achieving the expected goals.

6.1. Automatic operation rate of unit
After debugging and optimizing the early modeling prediction algorithm and control algorithm, debugging and 
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optimizing the video image algorithm, switching deployment between the edge and the cloud, and the overall 
trial operation test, the combustion control algorithm can be put into operation, the automatic operation rate is 
about 97%, and the specific data of the comparative test are shown in Table 1.

Table 1. Automatic operation table of the unit

Furnace number Operation time (hour) Total time (hour) Operation rate (%)

1 205 216 94.9

2 212 216 98.1

3 206 216 95.4

4 209 216 96.8

Total 832 864 96.3

6.2. Furnace header steam flow
It is seen from Table 2 that during the operation of the combustion optimization automatic control system, it 
can effectively improve the stability of the steam volume while ensuring that the steam volume is consistent. 
The average steam volume is the same compared to the manual operation period. The stability of the steam 
volume of furnaces #1–#4 is increased by 27.48%, 22.12%, 26.12%, and 21.06%, respectively, with an average 
increase of 24.2 %, indicating a stable combustion optimization control system. It can improve combustion 
stability while ensuring the overall load.

While the steam volume stability is improved, the header pressure stability is also greatly improved. The 
overall pressure stability of the #1–#4 furnace headers increased by 4.1%. The stability of the steam pressure 
effectively improved the stable operation of the steam turbine unit. The specific data are as follows.

In addition, the stability of critical parameters such as furnace temperature and oxygen content has also 
been improved. The T2X furnace temperature stability increased by 6.0% after operating the system. When the 
above vital parameters are stable, combustion stability can be improved, pollutants exceeding standards can be 
reduced, and furnace coking can be reduced, thereby effectively improving unit operation and equipment health. 

Table 2. Steam flow in furnace header

#1 Furnace header #2 Furnace header #3 Furnace header #4 Furnace header

Average 
pressure

Pressure standard 
deviation

Average 
pressure

Pressure standard 
deviation

Average 
pressure

Pressure standard 
deviation

Average 
pressure

Pressure standard 
deviation

Automatic 6.31 0.038 6.33 0.045 6.34 0.041 6.35 0.041

Manual 6.31 0.041 6.33 0.043 6.35 0.043 6.36 0.045

Increase (%) 0.0% 7.3% 0.0% -4.7% 0.2% 4.7% -0.2% 8.9%

6.3. Improvement of manual operation intensity
Table 3 lists system operation numbers before and after implementing the automatic control system. It can be 
seen from the table that after the combustion optimization, an automatic control system is put into operation; 
it can control the feeder, each grate, and primary and secondary air in real-time according to the current 
working conditions. The desuperheated water, SNCR, and other systems are automatically adjusted, requiring 
only a small amount of manual intervention under abnormal working conditions such as equipment failure, 
maintenance, garbage not catching fire, and stacking, significantly reducing operators’ workload.

Statistics were made on the number of operations of each control quantity of the combustion system during 
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the manual operation period, the number of interventions during the operation of the combustion optimization 
automatic control system, and the total number of operations was calculated. The statistical results are shown in 
the figure and table below. During manual operation, the total number of operations of the combustion system in 9 
days was 18,080. After the automatic control system was implemented, the total number of operations was 1,295, 
and the amount of manual operations was reduced by 93%. It significantly reduced the labor intensity of operators 
and was able to respond to on-site emergencies such as insufficient workforce in the central control room.

Table 3. List of system operation numbers before and after the automatic control system is integrated 
into the system

#1–#4 Furnaces Manual Automatic

Control amount Operation amount Operation amount

Feeder speed 3,016 851

Number of grate cycles 1,114 154

Number of lower grate cycles 1,112 0

Primary fan frequency 1,917 175

Secondary fan frequency 9,862 74

SNCR ammonia water regulating valve opening 361 15

SNCR dilution water regulating valve opening 15 0

Opening degree of the first stage desuperheating water regulating valve 616 26

Opening degree of the secondary desuperheating water regulating valve 67 0

Total 18,080 1,295

Decline (%) 93%

6.4. Optimization of the environmental reagents dosage and environmental parameters 
control
With the implementation of the combustion optimization control system, the production and operational conditions 
exhibited greater stability compared to manual control. Moreover, the system achieved automated control over 
SCR/SNCR/activated, leading to more consistent control of pollutant parameters, closely aligning them with the 
predefined set values. As a result, the permissible outlet NOX and SO2 values could be moderately increased within 
the environmental protection assessment requirements, thus effectively reducing the consumption of consumables 
such as ammonia and activated carbon while still meeting environmental protection standards. Table 4 shows 
the average NOX value and ammonia consumption based on the production operation report during the 18-day 
experiment. It can be seen from the table that the average NOX value during automatic operation is the same as that 
during manual control and is within the environmental protection standards. 

Table 4. NOX average value and ammonia water consumption table during the experiment

Total garbage disposal volume 
(t)

Total ammonia consumption 
(kg)

Ammonia consumption per ton of garbage 
(kg/t)

Average NOX value 
(mg/m3)

Automatic 26,647 84,570.51 3.17 95.99

Manual 28,516 84,873.12 2.98 95.00

Increase (%) 6.6% 0.36% -6.63% -1.03%

Table 5 shows the consumption of activated carbon and slaked lime based on the production operation 
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report during the 18-day experiment. The average values of SO2 and HCl are the same between automatic and 
manual, and ammonia escape is reduced by 11.6%. Slaked lime and the dosage of activated carbon are similar. 

Table 5. Activated carbon and slaked lime consumption table during the experiment

Total activated 
carbon consumption 

(kg)

Activated carbon 
consumption per ton 

of garbage 
(kg/t)

Total slaked lime 
consumption 

(kg)

Slaked lime 
consumption per 

ton of garbage 
(kg/t)

SO2 average 
(mg/m3)

HCl mean 
(mg/m3)

NH3 escape 
average value 

(mg/m3)

Automatic 11,274 0.4 2 138,830 5.21 1.76 0.57 6.72

Manual 11,438 0.4 138,810 4.87 2.08 0.44 7.6

Increase (%) 1.43% -5.48% - 0.01% -7.02% 15.3% -29.1% 11.6%

6.5. Energy consumption optimization and gas production indicators per ton
The test showed that during the 18-day experiment, due to more accurate oxygen adjustment and more 
stable furnace negative pressure, the power consumption of the secondary fan increased by 4.5%, the power 
consumption of the induced draft fan decreased by 4.7%, and the power consumption of the primary fan 
decreased by 5.1%; the overall fan power consumption is reduced by 4.1% (Table 6), and the average daily 
power consumption is reduced by 2,620 kWh. Based on this, it is estimated that the annual electricity bill will 
be saved approximately 620,000 CNY (based on 0.65 CNY per kWh), hence reducing operating costs. 

Table 6. Statistics table of fan power consumption

Primary fan power 
consumption (kWh)

Secondary fan power 
consumption (kWh)

Electricity consumption of in-
duced draft fan (kWh)

Total power consumption of 
the fan (kWh)

Automatic 31,024 44,939 481,038 557,001

Manual 32,697 43,021 504,863 580,581

Increase (%) 5.1% -4.5% 4.7% 4.1%

During the 18-day experiment, the critical indicators of the boiler’s gas production per ton increased by 
4.5 %, and the thermal ignition rate decreased by 3.1 % (Table 7), which proves that in the fully automatic 
state, while improving operational stability and reducing production costs, the operation indicator can still be 
controlled in a stable state.

Table 7. Statistical table of boiler gas production per ton and heat loss rate

Average gas production per ton of furnace #1–#4 #1–#4 Furnace thermal ignition rate average

Automatic 2.57 2.36

Manual 2.46 2.29

Increase (%) 4.5% -3.1%

6.6. Conclusion
Intelligent waste incineration control better integrates traditional industrial control and big data artificial 
intelligence in large-scale grate furnace control. Alibaba Cloud’s big data modeling and prediction technology 
is applied. The operator’s operating benchmark parameters are obtained through reinforcement learning 
algorithms, and the operation control benchmarks for each load section are obtained. Anomaly identification 
algorithms are used to build an identification model of material layer thickness for the drying section, and 
the thickness of the feed material is evaluated. Rapid and effective evaluation realizes the feed uniformity 
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control and solves the most fundamental and core feed problem in grate furnace control such as constructing 
prediction models of steam drum pressure, NOx, and SO2 through operation parameter prediction algorithm, 
and realizes operation parameters. The short-term prediction realizes advanced adjustment and improves the 
control performance; through a visual recognition algorithm, the flame image recognition is used to obtain the 
flame-burning status and combustion line position in the furnace, and the flame-burning status in the furnace 
is understood in real-time. The grate and air volume are then adjusted to optimize the combustion conditions 
in the furnace, and through comparing the data before and after commissioning, the fluctuations of parameters 
such as steam volume and turbine pressure have been significantly improved, and the control effect is ideal.

In the future, with the continuous accumulation of operating data after commissioning, the system model 
will be continuously optimized in combination with the operating process data, and the control effect will be 
further optimized and improved.
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