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Abstract: Convolutional neural networks (CNNs) are widely used to tackling complex tasks, which are prone to overfitting 

if the datasets are noisy. Therefore, we propose folding fan cropping and splicing (FFCS) regularization strategy to enhance 

representation abilities of CNNs. In particular, we propose two different methods considering the effect of different 

segmentation numbers on classification results. One is the random folding fan method, and the other is the fixed folding fan 

method. Experimental results showed that FFCS reduced the classification errors both with the value of 0.88% on CIFAR-10 

dataset and 1.86% on ImageNet dataset. Moreover, FFCS consistently outperformed Mixup and Random Erasing approaches 

on classification tasks. Therefore, FFCS effectively prevents overfitting and reduces the impact of background noises on 

classification tasks. 
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1. Introduction 

Convolutional neural networks (CNNs) [1] have enabled breakthroughs in numerous complex learning tasks 

thanks to their numerous parameters and rich expression ability. However, CNNS are at risk of overfitting 

because their complexity does not match the number of training sets. Therefore, many regularization 

methods came into being, including data augmentation [2], L1 regularization [3], L2 regularization [4], 

Dropout [5], DropConnect [6], and early stopping [7].  

Traditional data augmentation methods include self-supervised data augmentation [8,9] and 

unsupervised data augmentation [10,11]. Self-supervised data augmentation employs preset data 

transformation rules to augment data on the basis of existing data. Cutout [12] randomly crops a part from 

the picture. In other words, Cutout randomly selects an area to fill with 0 pixels. Mixup [13] mixes two 

images proportionally. Hide-and-Seek [14] divides images into S * S grids, and each grid is masked with a 

probability of 0.5. CutMix [15] randomly selects an area to fill with pixels from other images. The difference 

between CutMix and Cutout is the pixel value of the filled area. The difference between CutMix and Mixup 

is the way of mixing. Random Erasing [16] randomly erases an area to fill with random pixels. Random 

Erasing is between Cutout and CutMix. Random Erasing neither fills 0 pixels nor fills the pixel values of 

another image. Unlike the previous methods, the GridMask [17] mask area is not random. GridMask 

determines the mask by setting the side length of each small square and the distance between the two masks. 

FenceMask [18] is an improvement of GridMask. We proposed a better shape because we believe that using 

a square mask will have a significant on small objects. AugMix [19] randomly selects several transformations, 

and then fuses the transformed images together in proportion. The main idea of KeepAugment [20] is 
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analyzing the least important area for Cutout by obtaining the Saliency map or analyzing the most important 

area for CutMix. 

Compared to self-supervised data augmentation methods, unsupervised data augmentation is more 

advanced. Cycle Generative Adversarial Network (CycleGAN) [21] uses Generative Adversarial Network 

(GAN) [22] to generate a mapping relationship between input picture and the enhanced image. Automatic 

data augmentation works by constructing a search space that contains as many data augmentation methods 

as possible. When using different networks, the network looks in the search space to find the best algorithm 

for networks [23-26]. 

However, these methods do not reduce the impact of background noise on image classification. In this 

study, we propose a novel method called folding fan cropping and splicing (FFCS). FFCS can effectively 

prevent overfitting by cutting and splicing of folding fan. Although cutting and stitching is a very simple 

operation, sometimes the simplest operation can bring us unexpected results. In the case of large 

background noise, our proposed FFCS can well reduce the noise of background factors. In conclusion, 

FFCS not only significantly prevents overfitting, but also reduces the impacts of background noises on 

image classification. 

 

Figure 1. Detailed graphical explanation of R4 

 

2. Our proposed method 

In this paper, we propose FFCS for feature fusion extraction tasks with high noises. FFCS is divided into 

random folding fan method and fixed folding fan method. The random folding fan method means that the 

size of the outlet is random. The fixed folding fan method means that the size of the outlet is fixed. The 

number of files is divided into one, two, three, four, five and six. According to the size of the outlet, FFCS 

was mainly divided into R1–R6, F1–F6. In this section, we take R4 and F4 as examples to explain the 

operation. We blend the labels of the two pictures in proportion to the area of the picture to achieve the 

function of label smoothing [27]. 

 

2.1. Random folding fan method 

R4 included three steps. Firstly, we randomly selected two pictures from the training set. Secondly, we 

tailored two parts from pictures solely. Thirdly, we joined the cut pieces to a complete picture and input it 

into the network. R4 means that the size of the outlet is random, and the number of files is 4. In general, 

the sizes of the cuts were random, and the number of cuts was 4. We randomly selected two pictures from 

the training ing set and crop two regions from each image. In this way, we cropped out four regions in total. 

We alternately stitched the four regions together, so that regions from the same image will not be stitched 
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together. The specific details can be seen in Figure 1. To avoid the overlapping of two areas on the same 

image, we limited the range of parameters settings.   

Ix and Iy are breadth and altitude of the input. xy and yk are the positions of the upside left horn of the 

kth cropping region. 𝑤𝑘, ℎ𝑘 are the breadth and altitude of the kth cut piece. 𝑥𝑘 is an integer in the range 

of 0 to 𝐼𝑥 − 𝑤𝑘 + 1. 𝑦𝑘 is set to zero. Limiting the value range of 𝑥𝑘 prevents the cropping region from 

exceeding the range of the original images. Adding one makes 𝑥𝑘 take the boundary value 𝐼𝑥 − 𝑤𝑘. Two 

variables 𝑡1 and 𝑡2 are involved here. 𝑡1 is an integer within the scope of 0 to 0.5 ∗ 𝐼𝑥. 𝑡2 is an integer 

within the scope of 0.5 ∗ 𝐼𝑥 to 𝐼𝑥. The specific formulas are as follows. 

 

𝑡1 ∈ {(0,0.5 ∗ 𝐼𝑥), 𝑡1 ∈ ℤ}   (1) 

𝑡2 ∈ {(0.5 ∗ 𝐼𝑥, 𝐼𝑥), 𝑡2 ∈ ℤ}   (2) 

𝑤1 = 𝑡1   (3) 

𝑤2 = 0.5 ∗ 𝐼𝑥 − 𝑡1   (4) 

𝑤3 = 𝑡2 − 0.5 ∗ 𝐼𝑥      (5) 

𝑤4 = 𝐼𝑥 − 𝑡2     (6) 

ℎ1 = ℎ2 = ℎ3 = ℎ4 = 𝐼𝑦   (7) 

𝑥𝑘 ∈ {(0, 𝐼𝑥 − 𝑤𝑘 + 1), 𝑥𝑘 ∈ ℤ}   (8) 

𝑦𝑘 = 0   (9) 

                                                                                                                                               

The labels of the images were allocated according to the proportion of the cropped area to the previous 

pictures’ area. The widths and heights of the four cropping regions can be obtained from the equation (1) 

to (9). 𝑑𝑘 is the proportion of the kth clipping acreage to the total acreage. 𝑐1 is the ratio of the cropped 

regions on the first image to the total acreage. 𝑐2 is the proportion of the two cropped regions in the second 

image to the total area. The specific label allocation formulas are as follows: 

𝑑𝑘 =
𝑤𝑘 ∗ ℎ𝑘

𝐼𝑥 ∗ 𝐼𝑦
 (10) 

𝑐1 = 𝑑1 + 𝑑3, 𝑐2 = 𝑑2 + 𝑑4 (11) 

                                                                                                          

Table 1. Experimental results on two datasets  

Method 
CIFAR-10 ImageNet 

Test error Test loss Test error Test loss 

R1/F1 3.63% 0.15 10.52% 0.39 

R2 2.75% 0.11 8.66% 0.33 

F2 4.16% 0.16 10.38% 0.43 

R3 3.20% 0.14 9.53% 0.40 

F3 4.69% 0.16 14.34% 0.65 

R4 4.15% 0.15 10.95% 0.47 

F4 4.83% 0.17 14.59% 0.59 

R5 3.89% 0.15 15.78% 0.80 

F5 4.72% 0.16 14.70% 0.59 

R6 3.70% 0.15 11.74% 0.61 

F6 5.52% 0.18 18.14% 0.67 

 

2.2. Fixed folding fan method 

F4 includes three steps. Firstly, we randomly selected two pictures from the training ing set. Secondly, we 

tailored two pieces from the picture solely. Thirdly, we joined the cut pieces to a complete picture. F4 
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means that the size of the outlet is fixed, and the number of files is 4. Generally, the size of the cuts was 

fixed, and the number of cuts was 4. We randomly selected two pictures from the training set and cropped 

two pieces from each image. In this way, we cropped out four regions in total. The sizes of the four regions 

cropped out are the same. We alternately stitched the four regions together, so regions from the same image 

will not be stitched together. The specific details can be seen in Figure 2. We adjusted the parameters 

settings to avoid the overlapping of two areas on the same image. 

 

 
Figure 2. Detailed graphical explanation of F4 

 

Ix and Iy are the widths and heights of the input pictures. 𝑥𝑘, 𝑦𝑘 are the positions of the upside left 

horn of the kth cropping region. wk and hk are the width and height of the kth cropping region. 𝑥𝑘 is an 

integer in the range of 0 to  𝐼𝑥 − 𝑤𝑘 + 1. 𝑦𝑘 is set to zero. Limiting the value range of 𝑥𝑘 prevents the 

cropping region from exceeding the range of the original image. Adding one makes 𝑥𝑘 take the boundary 

value 𝐼𝑥 − 𝑤𝑘. Fixed-size means each of cropping areas has the same width and height. The width of the 

cropping area is a quarter of the original image. The height of the cropping area is the same as the original 

image. The specific formulas are as follows: 

 

𝑤1 = 𝑤2 = 𝑤3 = 𝑤4 = 0.25 ∗ 𝐼𝑥    (12) 

ℎ1 = ℎ2 = ℎ3 = ℎ4 = 𝐼𝑦    (13) 

𝑥𝑘 ∈ {(0, 𝐼𝑥 − 𝑤𝑘 + 1), 𝑥𝑘 ∈ ℤ}    (14) 

𝑦𝑘 = 0    (15) 

                                                                                                                                                                                                         

The labels of the images were allocated according to the proportion of the cropping areas to the original 

image areas. The four cropped regions of F4 had the same area. The label allocation ratio formulas were 

calculated as follows. Therefore, the labels were allocated according to the ratio of 1:1. 𝑑𝑘  is the 

proportion of the kth clipping acreage to the general acreage. 𝑐1 is proportion of the cropped pieces on the 

first image to the total acreage. 𝑐2 is the proportion of the two cropped regions in the second image to the 

total acreage. The specific label allocation formulas are as follows. 

 

𝑑𝑘 =
𝑤𝑘 ∗ ℎ𝑘

𝐼𝑥 ∗ 𝐼𝑦
    (16) 

𝑐1 = 𝑑1 + 𝑑3 = 0.5, 𝑐2 = 𝑑2 + 𝑑4 = 0.5    (17) 
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3. Experimental results 

Table 2. Comparison results 

Method 
CIFAR-10 ImageNet 

Test error Test loss Test error Test loss 

Dropout 3.63% 0.15 10.52% 0.39 

Dropout + R2 (Proposed method) 2.75% 0.11 8.66% 0.33 

Dropout + Random Erasing [16] 3.18% 0.11 11.31% 0.51 

Dropout + Mixup [13] 3.02% 0.16 10.07% 0.40 

 

3.1. Experiments on CIFAR-10 

We put FFCS into WideResNet 28-10 and assessed it. The dataset had a total of 10 categories. Each pixel 

contained 3 RGB values ranging from 0 to 255. We conducted experiments on CIFAR-10 to test the effect 

of FFCS on small datasets with low pixel values.  

We used a residual network called WideResNet, also known as [28] WRN, which is wider than ResNet 
[29]. WideResNet 28-10 means the depth of the network is 28 and the width is 10. We normalized each 

channel to 0 and standardized the variance. We boasted 4 pixel filling on every way. Besides, we boasted 

stochastic tailor and stochastic overturn in a longitudinal direction [30-32]. The weight arguments were 

initialized according to He’s article [33]. The weight update algorithm and learning rate were based on 

RICAP [27]. 

There are some details about the experimental results that we need to pay attention to. First of all, the 

backbone of the two datasets was different. More importantly, R1/F1 in Table 1 is the result of our 

backbone network output, which means that R1/F1 is the method of original image input. R and F stand for 

random cropping and fixed cropping. The numbers following the letters represent the number of splices. 

Based on Table 1, there were improvements compared to the original results in R2 and R3 on CIFAR-10, 

with the best performer being R2. R2 and F2 were dichotomous; however, R2 worked much better than F2. 

The label allocation ratio of 0.5 is the minimum point. It was F2 when the label allocation ratio was 0.5. 

The last two points were misclassified due to the background factor. Besides, the classification accuracy of 

F2 is lower than that of all R2’s. We also found that random cropping performed better than fixed cropping 

under the same conditions. Below is a sample illustration and caption for a multimedia file. 

 

3.2. Experiments on ImageNet 

 

 
Figure 3. Test error on two datasets 
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We put FFCS into WideResNet-50-2 and assessed it. The ImageNet is a well-known dataset and it 

covers most picture categories, which comes up to a thousand categories [34]. In tis study, we did not use all 

of ImageNet due to the large number of classes in its dataset. Therefore, we randomly selected 40 classes 

in this dataset as our dataset, which not only reduces the training time, but also improves the transfer 

learning ability of the networks. The ImageNet contains 1300 images per class. We divided the dataset 

according to the ratio of 5:1, which meant that each class had 1085 pictures for drilling and 215 images for 

measurement. In total, the training set contained 43280 pictures and the test set contained 8600 pictures. 

WideResNet-50-2 means the depth of the network is 50 and the width is 2. The lot size was set to 64, 

each channel was set to 0, and the variance was standardized. We also boasted stochastic tailoring, hue 

dithering, illumination, and stochastic overturn in the longitudinal direction [13,28]. The weight arguments 

were initialized according to He’s article [33]. The weight update algorithm and learning rate were based on 

RICAP. 

 

3.3. Result analysis 

Experiments were conducted on FFCS, which were explained in Section 3.1. and 3.2. In this section, we 

compared FFCS with other methods. In these experiments, R2 was compared with other methods, and R2 

performed well on both CIFAR-10 and ImageNet, with an accuracy improvement of 0.88% and 1.86%. It 

is obvious from Table 2 that FFCS is performed the best compared to the other two methods. To put it 

clearly, we also plotted the variation curve of the test error rate for different datasets under different methods 

in Figure 3. 

 

 
Figure 4. CAM of the images 

 

To evaluate FFCS, we adopted a technology named class activation map (CAM). CAM generates a 

heatmap of class activations on input images. CAM determines the part of the image that has the greatest 

impact on the final classification result. The redder the area, the higher the impact on the classification 

results, the higher the precision of the cropped images. We identified the problem by comparing the 

differences of CAM. Taking R2 method as example, in Figure 4, different stitched images have different 

heatmaps. Figure 4 consists of 12 small heatmaps which represents different proportions of the original 

image to the composite image. The ratio was 0 to 1 in steps of 0.1. When pictures were sent to mesh 

immediately, their classification results were easily affected by background noises, as shown in Figure 

4(a). In the original images, the network focused more on the patterns. The areas emphasized are very 

different for pictures with different pixel ratios. In conclusion, different splicing methods have a great 
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influence on the CAM. In conclusion, the FFCS in this paper is flexible and reduces the influence of 

background noise on the results to a certain extent. 

 

4. Conclusion 

In this study, we proposed a regularization strategy called folding fan cropping and splicing (FFCS) for 

images classification tasks. Our proposed FFCS not only prevents overfitting, but also reduces the influence 

of background noises on classification tasks. Besides, FFCS can also perform class label smoothing. FFCS 

has performed well on both CIFAR-10 and ImageNet, with an accuracy improvement of 0.88% and 1.86%. 

Meanwhile, the experimental results showed that our FFCS is not inferior to other methods. We may focus 

on more tailoring methods and selection optimization methods in our future works. 
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