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Abstract: In recent years, self-supervised learning which does not require a large number of manual labels generate supervised 

signals through the data itself to attain the characterization learning of samples. Self-supervised learning solves the problem 

of learning semantic features from unlabeled data, and realizes pre-training of models in large data sets. Its significant 

advantages have been extensively studied by scholars in recent years. There are usually three types of self-supervised learning: 

“Generative, Contrastive, and Generative-Contrastive.” The model of the comparative learning method is relatively simple, 

and the performance of the current downstream task is comparable to that of the supervised learning method. Therefore, we 

propose a conceptual analysis framework: data augmentation pipeline, architectures, pretext tasks, comparison methods, semi-

supervised fine-tuning. Based on this conceptual framework, we qualitatively analyze the existing comparative self-supervised 

learning methods for computer vision, and then further analyze its performance at different stages, and finally summarize the 

research status of self-supervised comparative learning methods in other fields.  
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1. Introduction 

Deep neural networks have the ability to learn rich patterns from a large number of data, and are widely 

used in most computer vision supervision tasks, such as image classification [1-3], semantic segmentation [4-

5], natural language Processing [6-8], graph learning [9-11], etc. However, supervised learning relies on 

millions of labeled data samples and is vulnerable to generalization errors, false associations, and 

adversarial attacks. Self-supervised learning has received widespread attention due to its data efficiency 

and generalization ability, and many advanced models are following this paradigm. 

Self-supervised learning does not involve manual labeling. It uses an excuse task to mine the supervised 

signals of the data from large-scale unlabeled data, and applies the learned representation information to 

downstream tasks. It belongs to a branch of the field of unsupervised learning. At present, self-supervised 

learning methods are mainly divided into three types: “Generative, Contrastive, and Generative-

Contrastive.” The details are shown in Figure 1. Their main difference lies in the discriminator, potential 

distribution z, loss function and so on. 

For computer vision, the comparative self-supervised learning method is a distinguishing method, 

which realizes the learning of unlabeled data by grouping similar samples closer together and different 

samples grouping further away. Comparative self-supervised learning has a simple structure, and its 

performance is comparable to supervised learning. Therefore, we collect the self-supervised comparative 

learning methods of visual representation in recent years, and analyze the current methods in detail based 
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on the conceptual analysis framework we proposed. In short, the main contribution of this article is： 

(1) Propose a conceptual analysis framework for the CSL method, realize the hierarchical analysis of 

the existing technology, and intuitively understand the difference of the CSL method. 

(2) Provide a detailed and up-to-date review of self-supervised comparative learning methods for 

computer vision. People can easily grasp the cutting-edge ideas in this direction. 

(3) On this basis, we analyze the comparative analysis of the quantitative performance of the existing 

technology in the public data set. 

(4) Discuss the current self-supervised comparative learning methods for natural language processing 

and multi-modal learning related technologies, discuss and analyze future development directions, 

etc. 

 

Figure 1.  Architecture comparison of Generative, Contrastive, and Generative-Contrastive 

 

2. Contrastive self-supervised learning methods 

At present, the comparison of self-supervised learning pipelines is usually shown in Figure 2. The 

augmentation processing of the original sample is a positive sample, while the remaining samples in the 

batch and data set are considered as negative samples, and the difference learning between positive and 

negative samples is learned by solving the pretext task. In the process of the pretext task, the model learns 

the representations in the training set, and then transfers to other downstream tasks after fine-tuning. 

This paper is based on the process of comparative learning method and the research of comparative 

self-supervised learning methods in recent years, as shown in Table 1. At the same time, in order to 

facilitate the qualitative analysis of the differences between different methods, a new conceptual analysis 

framework is proposed, including five parts: Data augmentation pipeline, architectures, pretext tasks, 
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comparison methods, semi-supervised fine-tuning. 

  Figure 2. Pipeline based on contrasting self-supervised learning methods 

Table 1. Comparison of existing methods. 

Method Architectures Pretext tasks Comparison NS PS 

RelativePosition [19] - 

Relative 

postion 

prediction 

Spatial relations 

(Context-

Instance) 

- - 

CDJR [20] End-to-end 

Jigsaw + 

Inpainting 

+ Colorization 

× × 

PIRL [21] Memory bank Jigsaw × √ 

RotNet [22] - 
Rotation 

Prediction 
- - 

Deep InfoMax [23] End-to-end 
 

MI 

Maximization 

 

Belonging 

(Context-

Instance) 

× × 

AMDIM [24] End-to-end × √ 

CPC [25] End-to-end × × 

DeepCluster [26] - 
 

 

Cluster 

discrimination 

 

 

Similarity 

(Instance-

Instance) 

- - 

Local Aggregation [27] - - - 

ClusterFit [28] - - - 

SwAV [29] Clustering - √ 

SEER [30] End-to-end - √ 

InstDisc [31] Memory bank 

 

 

 

 

Instance 

discrimination 

 

 

 

 

 

Identity 

(Instance-

Instance) 

× × 

CMC [32] End-to-end × √ 

MoCo [16] Momentum × × 

MoCo v2 [33] Momentum × √ 

SimCLR [17] End-to-end × √ 

InfoMin [34] End-to-end × √ 

BYOL [35] End-to-end no √ 

ReLIC [36] End-to-end × √ 

SimSiam [37] End-to-end no √ 

Note: For symbols in “NS” and “PS”: “-” means not applicable, “×” means not adopted, “√” means adopted; “no” particularly 

means not using negative samples in instance-instance contrast. 
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2.1. Data augmentation pipeline 

The purpose of the data augmentation pipeline is to generate anchor points, positive and negative samples, 

which maintain the same underlying features as the original samples. In the field of computer vision, there 

are two common data augmentation methods, one is the data augmentation of image processing technology, 

and the second is the data augmentation algorithm based on deep learning. SimCLR [17] demonstrated the 

positive impact of correct data augmentation pipeline on performance. 

The augmentation pipeline in AMDIM [24] uses random flipping, image jitter, normalization of mean 

and standard deviation, etc. The augmentation pipeline is randomly applied twice to generate positive 

samples, and applied once to negative samples. The author of InfoMin [34] first proposed an unsupervised 

method of minimizing the mutual information between views to increase the number of positive samples, 

and combing with a semi-supervised method to find views that only share label information to prevent the 

loss of predicted label information. This method is about 2% higher than MoCov2. BYOL [35] only uses 

positive examples, using a random image augmentation channel similar to SimCRL. 

 

2.2. Architecture 

The contrastive learning method relies on the calculation of the similarity of negative samples, which can 

be regarded as a dictionary lookup process. The size of the dictionary is different for different architecture, 

and it is usually divided into four structures: end-to-end, memory bank, momentum encoder, and clustering. 

As shown in Figure 3. 

 

Figure 3. Different architecture in contrastive learning method 

 

The end-to-end is a complex learning system that uses gradient learning, and all modules are 

differentiable. The original image and its augmentation image are positive samples, and other samples in 

the same batch are negative samples. Its structure is simple, suitable for large-scale, large-epoch use. The 

number of negative samples is related to the batch size. However, the batch size is limited by GPU memory, 
[15] pointed out this structure needs to be optimized in small batches. 

SimCLR [17] uses 4096 batches to process 100 epochs. The structure is shown in Figure 4., including 

image augmentation pipeline, encoder, projection, similarity calculation, and InfoNCE loss function. It 

adopts the two-mapping structure of encoder and projection, the upper and lower branches are symmetrical, 

and the two can share parameters. Oord et al. [25] proposed another popular end-to-end architecture. They 

used a powerful autoregressive model and contrast loss to predict the future of the latent space and learned 

the feature representation of high-dimensional time series data [20,23,24,30,32,34-37].  
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Figure 4. End-to-end in SimCLR 

 

It was proposed to use the repository to save all the features of the image and provide negative samples 

during training [21]. This structure solves the problem of excessive batch processing, but it consumes a lot 

of memory, its updates are slow and the complexity of update calculations is high. 

The structure of PIRL [21] is shown in Figure 5. The storage library M contains the feature representation 

of each sample, which is convenient to provide sufficient negative samples and provide an intermediate 

benchmark between the original image and the changed image, and it is updated in a moving average 

manner [31]. 

 

Figure 5.  PIRL’s memory bank  

 

The momentum encoder generates a dictionary as a queue of encoded keys, and adopts the momentum 

update method to realize that the dictionary keys are dynamically defined by a batch of data samples during 

training. This structure further solves the problem of the memory bank. 

The structure of MoCo V2 [33] is shown in Figure 6., similar to SimCLR. The parameters of the upper 

branch model of MoCo V2 are updated by backpropagation gradient, and the parameters of the lower branch 
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model is updated using Formula 1., and the upper and lower branches do not share parameters. 

 

Formula 1.  

 

Among them,  are the model parameters of the upper branch structure,  are the parameters of the 

lower branch structure model, m and are the adjustment parameters of the weight. Usually m will take a 

larger value. Compared with the upper branch parameter, the lower branch parameter changes slowly and 

steadily, and iterates from the random value to the optimal value bit by bit [16]. 

 

Figure 6. Momentum encoder used by MoCo 

 

The clustering follows an end-to-end approach, where two encoders share parameters and use a 

clustering algorithm to group similar features together. This structure implicitly solves the problem that in 

the Instance-based learning method, the comparison of different samples of the same class within the same 

batch cannot be achieved. The typical method SWAV of this structure, its structure is shown as in Figure 

7. 

Figure 7. Clustering used by SWAV 
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2.3. Pretext tasks 

The pretext tasks a self-supervised task, which automatically generates pseudo-labels based on the attributes 

found in the data to achieve characterization learning. Commonly used pretext tasks are mainly divided 

into four categories: color transformation, geometric transformation, context-based and view prediction 

(cross modal-based). Currently, cross modal-based commonly used the learning of video representations. 

Research has shown that it is necessary to choose the appropriate pretext tasks according to the problem to 

be solved. At the same time, different pretext tasks also affect the way of subsequent characterization 

extraction and comparison. 

Color transformation involves the basic adjustment of image color levels, such as blur, color distortion, 

grayscale conversion and so on. Geometric transformation is a spatial transformation that modifies the 

geometric shape of an image without changing its actual pixel information, such as zooming, random 

cropping, flipping etc. The purpose of those transformation used as pretext tasks is usually to restore, such 

as relative position prediction, rotation prediction and so on. RotNet [22] is the prediction of the rotation 

angle based on the transformation of rotation. 

For computer vision, context-based often include puzzles, future predictions and so on. PIRL [21] uses 

puzzle as a pretext task, the original image is the anchor point, the image after the position transformation 

is the positive sample, and other images in the batch are considered as negative samples [21]. CPC [25] 

research shows that high-dimensional data is compressed into a compact low-dimensional potential 

embedding space. A powerful autoregressive model can summarize the information of the potential space 

and generate a potential context representation. Based on the distributed vector of its composition, the 

maximum Ground retains the mutual information of the original signal. 

 

2.4. Comparison method 

2.4.1. Characterization extraction method 

At present, the comparative learning framework is divided into context-Instance comparison and Instance-

Instance comparison. Context-instance comparison focuses on the attribution relationship between the local 

features of the modeling sample and the global context. The Instance-Instance comparison directly studies 

the relationship between instance-level local representations of different samples. 

Context-instance comparison methods can usually be divided into two types: comparison based on 

spatial relations and comparison based on belonging. Three typical spatial relationship comparison methods: 

predict relative position [19], rotate [22] and solve puzzles [20,21,48]. The comparison method based on the 

attribution relationship focuses on the relationship between the local view and the global view of the sample, 

and solves it with the help of mutual information. Deep InfoMax [23] is the first method to explicitly model 

mutual information through comparative learning tasks, which promotes the development of self-

supervised learning. AMDIM [24] enhances the positive correlation between a local feature and its context. 

The comparison Instance-Instance method mainly includes two categories: comparison method by 

clustering and comparison method by identity [26,49-51].  

DeepCluster [26] first uses clustering to generate pseudo-labels. The training process is mainly two steps. 

The first is to cluster through clustering algorithms. Class, each sample generates a pseudo-label, the second 

is that the discriminator predicts whether two samples are from the same cluster and backpropagates to the 

encoder. SwAV [29] introduced online clustering ideas and multi-view data augmentation strategies into 

clustering discrimination methods. The prototype is InstDisc [31] with the comparison method by identity. 

Later, the research of this method focuses on the selection of positive and negative samples. Based on 

InstDisc, CMC [32] proposed to take multiple different views of one image as positive samples, and the other 

image as negative samples. MoCo [16] proposed a way through momentum encoder. SimCLR [17] proposes 

to add a nonlinear Projection transformation between representation and comparison to achieve the 
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extraction of lower-level information. InfoMin [34] chooses views with less mutual information to achieve 

better enhanced views and achieve an increase in positive samples. BYOL [35] abandons negative samples 

and proposes a new architecture that uses an exponential moving average strategy to update the target 

encoder. 

2.4.2. Similarity measure and loss function 

The measure of similarity is to measure the closeness of the embedding between two samples. The 

commonly used similarity measure is the cosine similarity (as shown in Formula 2.), which serves as the 

basis for different contrast loss functions. 

  
cos_ ( , )

||A |||| ||

AB
sim A B

B
=

    
 

The loss function uses contrast positive-negative samples to express learning ability, and is defined as 

a combination of positive and negative scores that reflect learning progress. Commonly used loss functions 

are NCE [18], InfoNCE [52], triplet loss [32]. 

 

2.5. Semi-supervised fine-tuning processing 

Improve the self-supervised learning model and improve the ability to extract data representations, but in 

order to transfer to downstream tasks, we need more or less tags. In order to narrow the gap between self-

supervised upstream tasks and downstream tasks, semi-supervised learning is usually used. 

Analysis based on the contrast self-supervised learning method is beneficial in many downstream vision 

tasks, but it cannot improve the target detection task in COCO [12]. Studies have found that the improvement 

of pre-training and self-training contributes to performance from different perspectives [13]. It is found that 

ResNet-50 uses 10% of the ImageNet label, which can surpass the supervised label of joint pre-training and 

self-training [14]. Therefore, for self-supervised comparative learning, a three-step framework is proposed: 

(1) Do self-supervised pre-training as SimCLR v1, with some minor architecture modification and a 

deeper ResNet. 

(2) Fine-tune the last few layers with only 1% or 10% of original ImageNet labels. 

(3) Use the fine-tuned network as teacher to yield labels on unlabeled data to train a smaller student 

ResNet-50. 

The success in combining self-supervised contrastive pre-training and semi-supervised self-training 

opens up our eyes for a future data-efficient deep learning paradigm. More work is expected for 

investigating their latent mechanisms. 

 

3. Image representation learning performance analysis 

In order to evaluate and compare the performance of self-supervised learning, it is usually analyzed from 

two aspects: the effectiveness of the pretext task and the specific performance of the downstream task. 

Assessing the effectiveness of the pretext task is usually analyzed by kernel visualization, feature map, and 

nearest neighbor-based methods. For example, attention maps generated from different layers of the 

encoder can be used to evaluate whether the excuse task is effective, as shown in Figure 8. 

In the downstream task, image classification, most methods use two commonly data sets of ImageNet 

and Places to evaluation. In terms of target detection, the Pascal VOC data set is often used to evaluation. 

The performance of these methods is better than the best supervised models. 

As shown in Table 2., without considering the proportion of batch size, epoch and the number of semi-

supervised fine-tuning labels, the current method's classification performance on ImageNet and the 

Formula 2. 
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performance of target detection on Pascal VOC are roughly counted. At present, the top-1 classification 

accuracy on the ImageNet dataset based on the comparative self-supervised learning method is comparable 

to the supervised classification accuracy, and the current top-1 accuracy is stable at 65% on the basic ResNet 

structure. At the same time, there is a small gap between performance and supervised learning in target 

detection tasks, and the average detection accuracy is above 80%. However, whether it is in classification 

tasks or target detection tasks, the gap between comparative learning methods and supervised learning 

methods is based on a deeper and wider network structure and training with a large number of samples. 

Figure 8. Attention map applied on Conv1 27x27, Conv3 13x13 and Conv5 6x6 features 

Table 2. (1) The linear classification accuracy based on frozen features is the highest (top-1); (2) VOC7+12 

features based on Faster-CNN fine-tuned target detection 

 

Method Encoder Parameter Top-1 Detection 

Supervised ResNet50 25.6M 53.2 81.3 

DeepCluster AlexNet 61M 37.5 55.4 

PIRL ResNet50 25.6M 49.8 80.7 

MoCo ResNet50 25.6M 60.6 81.4 

MoCo V2 ResNet50 25.6M 67.5 - 

SwAv ResNet50 25.6M 56.7 82.6 

CPC v2 ResNet50 25.6M 63.8  

CPC v2 ResNet161 305M 71.5 - 

SimCLR ResNet50 25.6M 65.6 84.1 

SimCLR ResNet50(2*) 94M 74.2 - 

SimCLR ResNet50(4*) 375M 76.5 - 

BYOL ResNet50 25.6M 68.8 85.4 

BYOL ResNet200(2*) 250M 77.7 - 

SimSiam ResNet50 25.6M 74.3 82.4 
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4. Contrastive learning in other areas of research 

At present, comparative learning is widely studied in the fields of natural language processing, multi-

modality, graph neural network and other fields. And different fields influence each other. 

Comparative learning was first introduced into natural language processing, using co-occurring words 

as semantic similarities, and using negative sampling to learn word embedding [38]. Learn useful feature 

representations from unlabeled data, and introduce latent classes to formalize semantically similar concepts. 

This method is comparable to state-of-the-art supervision methods on the Wiki-3029 dataset [39]. 

Researchers discuss the coherence and encodes the fine-grained sentence ordering in the text [40]. Although 

it has the same number of parameters as BERT-Base, it is better than the BERT-Large model. At the same 

time, it shows significant improvement on multiple downstream tasks [41-43]. 

Contrastive learning in the multi-modal field relies on the alignment of different modal information, 

and is basically supervised comparative learning. CM-ACC [44] learns the joint representation of audio and 

vision in video data, similar to MOCO, with an encoder and momentum encoder for each of the audio and 

visual modalities.CM-ACC adopts a method of dynamically constructing a queue to ensure the amount of 

information and diversity of negative cases. CLIP [45] and ALIGN [46] focus on text and visual modalities, 

and adopt a comparative learning mode in which there is only one encoder for each modal, and negative 

examples are selected in the batch. There is also WenLan [47]. 

 

5. Conclusion 

This article reviews the development status of comparative learning methods in self-supervised learning for 

computer vision. The comparative model is lightweight and uses unlabeled data to self-learn to generate 

supervised signals. At present, the performance on the basic data set is comparable to supervised learning. 

However, there are still many problems to be solved. For example, based on the problem of sampling 

efficiency, the theory of the role of negative samples in the method is not clear. SimCLR proves that data 

augmentation can improve the performance of the method, but the reasons and theories are not yet 

demonstrated. Evaluation of migration capability based on other data sets, etc.  
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